One-Step Synthesis of Structurally Stable CO2-Philic Membranes with Ultra-High PEO Loading for Enhanced Carbon Capture
Received date: 03 Nov 2021
Published date: 24 Jan 2023
Membrane technology has been considered a promising strategy for carbon capture to mitigate the effects of increasing atmospheric CO2 levels because CO2-philic membranes have demonstrated significant application potential, especially, for CO2/light gas separation. In this regard, poly(ethylene oxide) (PEO), which is a representative CO2-philic material, has attracted extensive research attention owing to its specific dipole–quadrupole interaction with CO2. Herein, we report a facile one-step synthesis protocol via the in situ polymerization of highly flexible polyethylene glycol to overcome the limitations of PEO, including high crystallinity and poor mechanical strength. The robust structure derived from intricate entanglements between short PEO chains and the polymer matrix enables an extremely high loading of linear polyethylene glycol (up to 90 wt%). Consequently, the separation performance easily surpasses the upper-bound limit. Moreover, the high structural stability allows for the concurrent increase of CO2 permeability and CO2/light gas selectivity at high feed pressure (up to 20 bar). This study provides a promising strategy to simultaneously improve the toughness and gas separation properties of all-polymeric membranes, demonstrating significant potential for industrial carbon capture and gas purification.
Bin Zhu , Shanshan He , Yadong Wu , Songwei Li , Lu Shao . One-Step Synthesis of Structurally Stable CO2-Philic Membranes with Ultra-High PEO Loading for Enhanced Carbon Capture[J]. Engineering, 2023 , 26(7) : 220 -228 . DOI: 10.1016/j.eng.2022.03.016
[1] |
Seneviratne SI, Donat MG, Pitman AJ, Knutti R, Wilby RL. Allowable CO2 emissions based on regional and impact-related climate targets. Nature 2016;529(7587):477–83.
|
[2] |
Chen X, Fan Y, Wu L, Zhang L, Guan D, Ma C, et al. Ultra-selective molecularsieving gas separation membranes enabled by multi-covalent-crosslinking of microporous polymer blends. Nat Commun 2021;12(1):6140.
|
[3] |
He S, Zhu B, Jiang X, Han G, Li S, Lau CH, et al. Symbiosis-inspired de novo synthesis of ultrahigh MOF growth mixed matrix membranes for sustainable carbon capture. Proc Natl Acad Sci USA 2022;119(1):e2114964119.
|
[4] |
Pulselli RM, Broersma S, Martin CL, Keeffe G, Bastianoni S, van den Dobbelsteen A. Future city visions. The energy transition towards carbon-neutrality: lessons learned from the case of Roeselare, Belgium. Renew Sustain Energy Rev 2021;137:110612.
|
[5] |
He X. Polyvinylamine-based facilitated transport membranes for postcombustion CO2 capture: challenges and perspectives from materials to processes. Engineering 2021;7(1):124–31.
|
[6] |
Zeng H, He S, Hosseini SS, Zhu B, Shao L. Emerging nanomaterial incorporated membranes for gas separation and pervaporation towards energetic-efficient applications. Adv Membr 2022;2:100015.
|
[7] |
Wang Y, Wang X, Guan J, Yang L, Ren Y, Nasir N, et al. 110th anniversary: mixed matrix membranes with fillers of intrinsic nanopores for gas separation. Ind Eng Chem Res 2019;58(19):7706–24.
|
[8] |
Liang CZ, Chung TS, Lai JY. A review of polymeric composite membranes for gas separation and energy production. Prog Polym Sci 2019;97:101141.
|
[9] |
Han W, Zhang C, Zhao M, Yang F, Yang Y, Weng Y. Post-modification of PIM-1 and simultaneously in situ synthesis of porous polymer networks into PIM-1 matrix to enhance CO2 separation performance. J Membr Sci 2021;636:119544.
|
[10] |
Zhu B, Jiang Xu, He S, Yang X, Long J, Zhang Y, et al. Rational design of poly (ethylene oxide) based membranes for sustainable CO2 capture. J Mater Chem A 2020;8(46):24233–52.
|
[11] |
Meshkat S, Kaliaguine S, Rodrigue D. Comparison between ZIF-67 and ZIF-8 in Pebax MH-1657 mixed matrix membranes for CO2 separation. Sep Purif Technol 2020;235:116150.
|
[12] |
Liu W, Jiang SD, Yan Y, Wang W, Li J, Leng K, et al. A solution-processable and ultra-permeable conjugated microporous thermoset for selective hydrogen separation. Nat Commun 2020;11(1):1633.
|
[13] |
Ebadi Amooghin A, Mashhadikhan S, Sanaeepur H, Moghadassi A, Matsuura T, Ramakrishna S. Substantial breakthroughs on function-led design of advanced materials used in mixed matrix membranes (MMMs): a new horizon for efficient CO2 separation. Prog Mater Sci 2019;102:222–95.
|
[14] |
He S, Zhu B, Li S, Zhang Y, Jiang X, Hon Lau C, et al. Recent progress in PIM-1 based membranes for sustainable CO2 separations: polymer structure manipulation and mixed matrix membrane design. Sep Purif Technol 2022;284:120277.
|
[15] |
Shen L, Yi M, Japip S, Han C, Tian L, Lau CH, et al. Breaking through permeability–selectivity trade-off of thin-film composite membranes assisted with crown ethers. AIChE J 2021;67(6):e17173.
|
[16] |
Deng J, Dai Z, Hou J, Deng L. Morphologically tunable mof nanosheets in mixed matrix membranes for CO2 separation. Chem Mater 2020;32 (10):4174–84.
|
[17] |
Ma L, Svec F, Lv Y, Tan T. In situ bottom-up growth of metal-organic frameworks in a crosslinked poly(ethylene oxide) layer with ultrahigh loading and superior uniform distribution. J Mater Chem A 2019;7(35):20293–301.
|
[18] |
Lilleby Helberg RM, Dai Z, Ansaloni L, Deng L. PVA/PVP blend polymer matrix for hosting carriers in facilitated transport membranes: aynergistic enhancement of CO2 separation performance. Green Energy Environ 2020;5(1):59–68.
|
[19] |
Lee JH, Park CH, Jung JP, Kim JH, Kim JH. Dual-phase all-polymeric membranes with graft copolymer filler for CO2 capture. Chem Eng J 2018;334:939–47.
|
[20] |
Kim NU, Park BJ, Park MS, Park JT, Kim JH. Semi-interpenetrating polymer network membranes based on a self-crosslinkable comb copolymer for CO2 capture. Chem Eng J 2019;360:1468–76.
|
[21] |
Yang X, Martinson ABF, Elam JW, Shao L, Darling SB. Water treatment based on atomically engineered materials: atomic layer deposition and beyond. Matter 2021;4(11):3515–48.
|
[22] |
Brinkmann T, Lillepärg J, Notzke H, Pohlmann J, Shishatskiy S, Wind J, et al. Development of CO2 selective poly(ethylene oxide)-based membranes: from laboratory to pilot plant scale. Engineering 2017;3(4):485–93.
|
[23] |
Lau CH, Liu S, Paul DR, Xia J, Jean YC, Chen H, et al. Silica nanohybrid membranes with high CO2 affinity for green hydrogen purification. Adv Energy Mater 2011;1(4):634–42.
|
[24] |
Yave W, Car A, Peinemann KV. Nanostructured membrane material designed for carbon dioxide separation. J Membr Sci 2010;350(1–2):124–9.
|
[25] |
Quan S, Tang YP, Wang ZX, Jiang ZX, Wang RG, Liu YY, et al. PEG-imbedded PEO membrane developed by a novel highly efficient strategy toward superior gas transport performance. Macromol Rapid Commun 2015;36(5):490–5.
|
[26] |
Li F, Zhang C, Weng Y. Preparation and gas separation properties of triptycenebased microporous polyimide. Macromol Chem Phys 2019;220(10):1900047.
|
[27] |
Yan L, Yang X, Zhao Y, Wu Y, Motlhaletsi Moutloali R, Mamba BB, et al. Bioinspired mineral–hydrogel hybrid coating on hydrophobic pvdf membrane boosting oil/water emulsion separation. Separ Purif Technol 2022;285:120383.
|
[28] |
Jiang X, He SS, Li SW, Bai YP, Shao L. Penetrating chains mimicking plant root branching to build mechanically robust, ultra-stable CO2-philic membranes for superior carbon capture. J Mater Chem A 2019;7(28):16704–11.
|
[29] |
Zhang C. Synthesis and characterization of bis(phenyl)fluorene-based cardo polyimide membranes for H2/CH4 separation. J Mater Sci 2019;54 (14):10560–9.
|
[30] |
Hong H, Gao L, Zheng Y, Xing X, Sun F, Liu T, et al. A path of multi-energy hybrids of concentrating solar energy and carbon fuels for low CO2 emission. ES Energy Environ 2021:1–7.
|
[31] |
Pellessier J, Gang Y, Li Y. A sustainable synthesis of nickel–nitrogen–carbon catalysts for efficient electrochemical CO2 reduction to CO. ES Mater Manuf 2021;13:66–75.
|
[32] |
He R, Cong S, Xu S, Han S, Guo H, Liang Z, et al. CO2-philic mixed matrix membranes based on low-molecular-weight polyethylene glycol and porous organic polymers. J Membr Sci 2021;624:119081.
|
[33] |
Wang W, Sun J, Zhang Y, Zhang Y, Hong G, Moutloali RM, et al. Mussel-inspired tannic acid/polyethyleneimine assembling positively-charged membranes with excellent cation permselectivity. Sci Total Environ 2022;817:153051.
|
[34] |
Shi F, Sun J, Wang J, Liu M, Yan Z, Zhu B, et al. Mxene versus graphene oxide: investigation on the effects of 2D nanosheets in mixed matrix membranes for CO2 separation. J Membr Sci 2021;620:118850.
|
[35] |
Lin H, Wagner E, Swinnea J, Freeman B, Pas S, Hill A, et al. Transport and structural characteristics of crosslinked poly(ethylene oxide) rubbers. J Membr Sci 2006;276(1–2):145–61.
|
[36] |
Zhang C, Li P. Preparation and gas separation properties of spirobichromanbased polyimides. Macromol Chem Phys 2018;219(16):1800157.
|
[37] |
Magana S, Sudre G, Gouanvé F, Cousin F, Espuche E. Influence of the filmforming process on the nanostructuration of Pebax/1-ethyl-3- methylimidazolium triflate ionic liquid: consequences on the thermal, mechanical, gas, and water transport properties. J Polym Sci, B, Polym Phys 2017;55(10):778–88.
|
[38] |
Reijerkerk SR, Wessling M, Nijmeijer K. Pushing the limits of block copolymer membranes for CO2 separation. J Membr Sci 2011;378(1–2):479–84.
|
[39] |
Shin JE, Lee SK, Cho YH, Park HB. Effect of PEG-MEA and graphene oxide additives on the performance of Pebax1657 mixed matrix membranes for CO2 separation. J Membr Sci 2019;572:300–8.
|
[40] |
Kim JH, Ha SY, Lee YM. Gas permeation of poly(amide-6-b-ethylene oxide) copolymer. J Membr Sci 2001;190(2):179–93.
|
[41] |
Liu J, Zhang S, Jiang D, Doherty CM, Hill AJ, Cheng C, et al. Highly polar but amorphous polymers with robust membrane CO2/N2 separation performance. Joule 2019;3(8):1881–94.
|
[42] |
Car A, Stropnik C, Yave W, Peinemann KV. PEG modified poly(amide-b-ethylene oxide) membranes for CO2 separation. J Membr Sci 2008;307(1):88–95.
|
[43] |
Rabiee H, Ghadimi A, Abbasi S, Mohammadi T. CO2 separation performance of poly(ether-b-amide6)/PTMEG blended membranes: permeation and sorption properties. Chem Eng Res Des 2015;98:96–106.
|
[44] |
Reijerkerk SR, Knoef MH, Nijmeijer K, Wessling M. Poly(ethylene glycol) and poly(dimethyl siloxane): combining their advantages into efficient CO2 gas separation membranes. J Membr Sci 2010;352(1–2):126–35.
|
[45] |
Didden J, Thür R, Volodin A, Vankelecom IFJ. Blending PPO-based molecules with Pebax MH 1657 in membranes for gas separation. J Appl Polym Sci 2018;135(27):46433.
|
[46] |
Kim SJ, Jeon H, Kim DJ, Kim JH. High-performance polymer membranes with multi-functional amphiphilic micelles for CO2 capture. Chem Sus Chem 2015;8 (22):3783–92.
|
[47] |
Robeson LM. The upper bound revisited. J Membr Sci 2008;320(1–2):390–400
|
/
〈 | 〉 |