The Development of 3D Atomic Force Microscopy with Magnetically Driven-orthogonal Cantilever Probes
Received date: 29 Nov 2021
Published date: 24 Jan 2023
This paper presents a three-dimensional (3D)-atomic force microscopy (AFM) method based on magnetically driven (MD)-orthogonal cantilever probes (OCPs), in which two independent scanners with three degrees of freedom are used to achieve the vector tracking of a sample surface with a controllable angle. A rotating stage is integrated into the compact AFM system, which helps to achieve 360° omnidirectional imaging. The specially designed MD-OCP includes a horizontal cantilever, a vertical cantilever, and a magnetic bead that can be used for the mechanical drive in a magnetic field. The vertical cantilever, which has a protruding tip, can detect deep grooves and undercut structures. The design, simulation, fabrication, and performance analysis of the MD-OCP are described first. Then, the amplitude compensation and home positioning for 360° rotation are introduced. A comparative experiment using an AFM step grating verifies the ability of the proposed method to characterize steep sidewalls and corner details, with a 3D topography reconstruction method being used to integrate the images. The effectiveness of the proposed 3D-AFM based on the MD-OCP is further confirmed by the 3D characterization of a micro-electromechanical system (MEMS) device with microcomb structures. Finally, this technique is applied to determine the critical dimensions (CDs) of a microarray chip. The experimental results regarding the CD parameters show that, in comparison with 2D technology, from which it is difficult to obtain sidewall information, the proposed method can obtain CD information for 3D structures with high precision and thus has excellent potential for 3D micro–nano manufacturing inspection.
Hao Zhang , Junyuan Geng , Haibo Gao , Weibin Rong , Hui Xie . The Development of 3D Atomic Force Microscopy with Magnetically Driven-orthogonal Cantilever Probes[J]. Engineering, 2023 , 24(5) : 84 -93 . DOI: 10.1016/j.eng.2022.06.010
[1] |
Ren Z, Chang Y, Ma Y, Shih K, Dong B, Lee C. Leveraging of MEMS technologies for optical metamaterials applications. Adv Opt Mater 2020;8(3):1900653.
|
[2] |
Osiander R, Darrin MAG, Champion JL. MEMS and microstructures in aerospace applications. Boca Raton: CRC Press; 2006.
|
[3] |
Leclerc J. MEMS for aerospace navigation. IEEE Aerosp Electron Syst Mag 2007;22(10):31‒6.
|
[4] |
Qiu Z, Piyawattanametha W. MEMS-based medical endomicroscopes. IEEE J Sel Top Quantum Electron 2015;21(4):376‒91.
|
[5] |
Polla DL, Erdman AG, Robbins WP, Markus DT, Diaz-Diaz J, Rizq R, et al. Microdevices in medicine. Annu Rev Biomed Eng 2000;2(1):551‒76.
|
[6] |
Cao X, Tan C, Sindoro M, Zhang H. Hybrid micro-/nano-structures derived from metal-organic frameworks: preparation and applications in energy storage and conversion. Chem Soc Rev 2017;46(10):2660‒77.
|
[7] |
Qiu L, Ouyang Y, Feng Y, Zhang X. Review on micro/nano phase change materials for solar thermal applications. Renew Energy 2019;140:513‒38.
|
[8] |
Siedlik MJ, Yang Z, Kadam PS, Eberwine J, Issadore D. Micro- and nano-devices for studying subcellular biology. Small 2021;17(3):2005793.
|
[9] |
Halder A, Sun Yi. Biocompatible propulsion for biomedical micro/nano robotics. Biosens Bioelectron 2019;139:111334.
|
[10] |
Kim SK. Effects of line-edge roughness on extreme ultraviolet lithography CDs and fin-field-effect-transistor performance for below 10-nm patterns. J Nanosci Nanotechnol 2017;17(11):8338‒43.
|
[11] |
Kim HW, Lee JY, Shin J, Woo SG, Cho HK, Moon JT. Experimental investigation of the impact of LWR on sub-100-nm device performance. IEEE Trans Electron Dev 2004;51(12):1984‒8.
|
[12] |
Bohn S, Sperlich K, Allgeier S, Bartschat A, Prakasam R, Reichert KM, et al. Cellular in vivo 3D imaging of the cornea by confocal laser scanning microscopy. Biomed Opt Express 2018;9(6):2511.
|
[13] |
Yin B, Piao Z, Nishimiya K, Hyun C, Gardecki JA, Mauskapf A, et al. 3D cellular-resolution imaging in arteries using few-mode interferometry. Light Sci Appl 2019;8(1):104.
|
[14] |
Zou YB, Khan MSS, Li HM, Li YG, Li W, Gao ST, et al. Use of model-based library in critical dimension measurement by CD-SEM. Measurement 2018;123:150‒62.
|
[15] |
Seo JH, Lee C, Lee B, Doi A, Yamauchi A, Bizen D, et al. Non-destructive depth measurement using SEM signal intensity. In: Proceedings of Metrology, Inspection, and Process Control for Semiconductor Manufacturing XXXV; 2021 Feb 22‒27; online. SPIE; 2021. p. 116112Q.
|
[16] |
Baumann FH, Popielarski B, Lu Y, Mitchell T. Extension of CD-TEM towards 3D elemental mapping. IEEE Trans Semicond Manuf 2020;33(3):346‒51.
|
[17] |
Moore SI, Ruppert MG, Yong YK. AFM cantilever design for multimode Q control: arbitrary placement of higher order modes. IEEE/ASME Trans Mechatron 2020;25(3):1389‒97.
|
[18] |
Wu Y, Fang Y, Wang C, Fan Z, Liu C. An optimized scanning-based AFM fast imaging method. IEEE/ASME Trans Mechatron 2020;25(2):535‒46.
|
[19] |
Braker RA, Luo Y, Pao LY, Andersson SB. Improving the image acquisition rate of an atomic force microscope through spatial subsampling and reconstruction. IEEE/ASME Trans Mechatron 2020;25(2):570‒80.
|
[20] |
Martin Y, Wickramasinghe HK. Method for imaging sidewalls by atomic force microscopy. Appl Phys Lett 1994;64(19):2498‒500.
|
[21] |
Murayama K, Gonda S, Koyanagi H, Terasawa T, Hosaka S. Critical-dimension measurement using multi-angle-scanning method in atomic force microscope. Jpn J Appl Phys 2006;45(7):5928‒32.
|
[22] |
Murayama K, Gonda S, Koyanagi H, Terasawa T, Hosaka S. Side-wall measurement using tilt-scanning method in atomic force microscope. Jpn J Appl Phys 2006;45(6B):5423‒8.
|
[23] |
Xie H, Hussain D, Yang F, Sun L. Atomic force microscope caliper for critical dimension measurements of micro and nanostructures through sidewall scanning. Ultramicroscopy 2015;158:8‒16.
|
[24] |
Xie H, Hussain D, Yang F, Sun L. Development of three-dimensional atomic force microscope for sidewall structures imaging with controllable scanning density. IEEE/ASME Trans Mechatron 2016;21(1):316‒28.
|
[25] |
Zavedeev EV, Jaeggi B, Zuercher J, Neuenschwander B, Zilova OS, Shupegin ML, et al. Effects of AFM tip wear on frictional images of laser-patterned diamond-like nanocomposite films. Wear 2018;416‒417:1‒5.
|
[26] |
Strahlendorff T, Dai G, Bergmann D, Tutsch R. Tip wear and tip breakage in high-speed atomic force microscopes. Ultramicroscopy 2019;201:28‒37.
|
[27] |
Shen J, Zhang D, Zhang FH, Gan Y. AFM characterization of patterned sapphire substrate with dense cone arrays: image artifacts and tip-cone convolution effect. Appl Surf Sci 2018;433:358‒66.
|
[28] |
Florin EL, Radmacher M, Fleck B, Gaub HE. Atomic force microscope with magnetic force modulation. Rev Sci Instrum 1994;65(3):639‒43.
|
[29] |
Jayanth GR, Jeong Y, Menq CH. Direct tip-position control using magnetic actuation for achieving fast scanning in tapping mode atomic force microscopy. Rev Sci Instrum 2006;77(5):053704.
|
[30] |
Meng X, Zhang H, Song J, Wen Y, Sun L, Xie H. Simultaneously measuring force and displacement: calibration of magnetic torque actuated microcantilevers for nanomechanical mapping. IEEE Sens J 2018;18(7):2682‒9.
|
[31] |
Meng X, Zhang H, Song J, Fan X, Sun L, Xie H. Publisher Correction: broad modulus range nanomechanical mapping by magnetic-drive soft probes. Nat Commun 2018;9:304.
|
[32] |
Xie H, Meng X, Zhang H, Sun L. Development of a magnetically driven microgripper for piconewton force-controlled microscale manipulation and characterization. IEEE Trans Ind Electron 2020;67(3):2065‒75.
|
[33] |
Habibullah H. 30 years of atomic force microscopy: creep, hysteresis, cross-coupling, and vibration problems of piezoelectric tube scanners. Measurement 2020;159:107776.
|
[34] |
Xie H, Wen Y, Shen X, Zhang H, Sun L. High-speed AFM imaging of nanopositioning stages using H∞ and iterative learning control. IEEE Trans Ind Electron 2020;67(3):2430‒9.
|
[35] |
Geng J, Zhang H, Meng X, Rong W, Xie H. Sidewall imaging of microarray-based biosensor using an orthogonal cantilever probe. IEEE Trans Instrum Meas 2021;70:1‒8.
|
[36] |
Xie H, Zhang H, Song J, Meng X, Wen Y, Sun L. High-precision automated micromanipulation and adhesive microbonding with cantilevered micropipette probes in the dynamic probing mode. IEEE/ASME Trans Mechatron 2018;23(3):1425‒35.
|
[37] |
Palacio MLB, Bhushan B. Normal and lateral force calibration techniques for AFM cantilevers. Crit Rev Solid State Mater Sci 2010;35(2):73‒104.
|
[38] |
Foucher J, Pikon A, Andes C, Thackeray J. Impact of acid diffusion length on resist LER and LWR measured by CD-AFM and CD-SEM. In: Proceedings of Metrology, Inspection, and Process Control for Microlithography XXI; 2007 Feb 25-Mar 2; San Jose, CA, USA. SPIE; 2007. p. 65181Q.
|
[39] |
Beltramo C, Riina MV, Colussi S, Campia V, Maniaci MG, Biolatti C, et al. Validation of a DNA biochip for species identification in food forensic science. Food Control 2017;78:366‒73.
|
[40] |
Wang LC, Huang D, Pu CE, Wang CH. Avian oncogenic virus differential diagnosis in chickens using oligonucleotide microarray. J Virol Methods 2014;210:45‒50.
|
[41] |
Song Y, Ye Y, Su SH, Stephens A, Cai T, Chung MT, et al. A digital protein microarray for COVID-19 cytokine storm monitoring. Lab Chip 2021;21(2):331‒43.
|
[42] |
Zong C, Venot A, Li X, Lu W, Xiao W, Wilkes JS, et al. Heparan sulfate microarray reveals that heparan sulfate-protein binding exhibits different ligand requirements. J Am Chem Soc 2017;139(28):9534‒43.
|
[43] |
Klein O, Kanter F, Kulbe H, Jank P, Denkert C, Nebrich G, et al. MALDI-imaging for classification of epithelial ovarian cancer histotypes from a tissue microarray using machine learning methods. Proteomics Clin Appl 2019;13(1):1700181.
|
[44] |
Coati I, Lotz G, Fanelli GN, Brignola S, Lanza C, Cappellesso R, et al. Claudin-18 expression in oesophagogastric adenocarcinomas: a tissue microarray study of 523 molecularly profiled cases. Br J Cancer 2019;121(3):257‒63.
|
[45] |
Vo-Dinh T. Biosensors and biochips. In: Ferrari M, Bashir R, Wereley S, editors. BioMEMS and biomedical nanotechnology. Boston: Springer; 2006. p. 1‒20.
|
[46] |
Mack CA. Reducing roughness in extreme ultraviolet lithography. J Micro/Nanolith MEMS MOEMS 2018;17(4):041006.
|
/
〈 | 〉 |