Tumor-Specific CircRNA-Derived Antigen Peptide Identification for Hepatobiliary Tumors
Received date: 18 Mar 2022
Published date: 24 Jan 2023
The application of tumor antigen-based immunotherapy is hindered by the rarity of validated immunogenic peptides. In this study, we aimed to investigate the potential of circular RNAs (circRNAs) as a novel source of tumor antigen peptides in hepatobiliary tumor organoids. Using RNA-sequencing (RNA-seq) with an algorithm-based score tool, 3950 translated tumor-specific circRNAs were predicted to generate 18 971 antigen peptides in 27 organoids. In view of the antigen landscape, 11 amino acid length (mer) peptides and human leukocyte antigen (HLA)-A binding peptides harbored the highest immunogenicity-related scores. In three out of five analyzed organoids, 13 predicted antigen peptides were directly confirmed as HLA-A, -B, and -C (HLA-ABC) binding peptides with mass spectrometry (MS)-based immunopeptidomics. CircRNA-derived tumor-specific peptides presented by the HLA-ABC molecules stimulated cluster of differentiation 8 (CD8) T cells to exhibit increased CD107a interferon γ (IFNγ) co-expressions and IFNγ secretion in flow cytometry and enzyme-linked immunosorbent assay (ELISA). Cytotoxic T cell activity targeting the organoids, induced by the immunogenic circRNA-derived peptides, was verified in a killing assay. Notably, the antigen peptide YGFNEILKK from circTBC1D15 was not only recognized as an HLA-ABC-presented peptide of the organoids but also drastically reduced the tumor organoid survival rate. Our findings highlight a crucial subset for generating tumor antigens, which has implications for targeting tumor-specific circRNAs in cancers.
Wenwen Wang , Lili Ma , Zheng Xing , Tinggan Yuan , Jinxia Bao , Yanjing Zhu , Xiaofang Zhao , Yan Zhao , Yali Zong , Yani Zhang , Siyun Shen , Xinyao Qiu , Shuai Yang , Hongyang Wang , Dong Gao , Peng Wang , Lei Chen . Tumor-Specific CircRNA-Derived Antigen Peptide Identification for Hepatobiliary Tumors[J]. Engineering, 2023 , 22(3) : 159 -170 . DOI: 10.1016/j.eng.2022.06.008
[1] |
Hu Z, Ott PA, Wu CJ. Towards personalized, tumour-specific, therapeutic vaccines for cancer. Nat Rev Immunol 2018;18(3):168–82.
|
[2] |
Basu R, Whitlock BM, Husson J, Le Floc’h A, Jin W, Oyler-Yaniv A, et al. Cytotoxic T cells use mechanical force to potentiate target cell killing. Cell 2016;165(1):100–10.
|
[3] |
Parkhurst MR, Robbins PF, Tran E, Prickett TD, Gartner JJ, Jia L, et al. Unique neoantigens arise from somatic mutations in patients with gastrointestinal cancers. Cancer Discov 2019;9(8):1022–35.
|
[4] |
Cohen CJ, Gartner JJ, Horovitz-Fried M, Shamalov K, Trebska-McGowan K, Bliskovsky VV, et al. Isolation of neoantigen-specific T cells from tumor and peripheral lymphocytes. J Clin Invest 2015;125(10):3981–91.
|
[5] |
Hansen UK, Ramskov S, Bjerregaard AM, Borch A, Andersen R, Draghi A, et al. Tumor-infiltrating T cells from clear cell renal cell carcinoma patients recognize neoepitopes derived from point and frameshift mutations. Front Immunol 2020;11:373.
|
[6] |
Yang W, Lee KW, Srivastava RM, Kuo F, Krishna C, Chowell D, et al. Immunogenic neoantigens derived from gene fusions stimulate T cell responses. Nat Med 2019;25(5):767–75.
|
[7] |
Pamudurti NR, Bartok O, Jens M, Ashwal-Fluss R, Stottmeister C, Ruhe L, et al. Translation of circRNAs. Mol Cell 2017;66(1):9–21.e7.
|
[8] |
Vo JN, Cieslik M, Zhang Y, Shukla S, Xiao L, Zhang Y, et al. The landscape of circular RNA in cancer. Cell 2019;176(4):869–881.e13.
|
[9] |
Wang Y, Wang Z. Efficient backsplicing produces translatable circular mRNAs. RNA 2015;21(2):172–9.
|
[10] |
Zhang M, Zhao K, Xu X, Yang Y, Yan S, Wei P, et al. A peptide encoded by circular form of LINC-PINT suppresses oncogenic transcriptional elongation in glioblastoma. Nat Commun 2018;9(1):4475.
|
[11] |
Chen CY, Sarnow P. Initiation of protein synthesis by the eukaryotic translational apparatus on circular RNAs. Science 1995;268(5209):415–7.
|
[12] |
Zhao J, Wu J, Xu T, Yang Q, He J, Song X. IRESfinder: identifying RNA internal ribosome entry site in eukaryotic cell using framed k-mer features. J Genet Genomics 2018;45(7):403–6.
|
[13] |
Deniger DC, Pasetto A, Robbins PF, Gartner JJ, Prickett TD, Paria BC, et al. T-cell responses to TP53 ‘‘Hotspot” mutations and unique neoantigens expressed by human ovarian cancers. Clin Cancer Res 2018;24(22):5562–73.
|
[14] |
Broutier L, Mastrogiovanni G, Verstegen MM, Francies HE, Gavarró LM, Bradshaw CR, et al. Human primary liver cancer-derived organoid cultures for disease modeling and drug screening. Nat Med 2017;23(12):1424–35.
|
[15] |
Saito Y, Muramatsu T, Kanai Y, Ojima H, Sukeda A, Hiraoka N, et al. Establishment of patient-derived organoids and drug screening for biliary tract carcinoma. Cell Rep 2019;27(4):1265–76.e4.
|
[16] |
Zumwalde NA, Haag JD, Sharma D, Mirrielees JA, Wilke LG, Gould MN, et al. Analysis of immune cells from human mammary ductal epithelial organoids reveals Vd2+ T cells that efficiently target breast carcinoma cells in the presence of bisphosphonate. Cancer Prev Res 2016;9(4):305–16.
|
[17] |
Rogoz A, Reis BS, Karssemeijer RA, Mucida D. A 3-D enteroid-based model to study T-cell and epithelial cell interaction. J Immunol Methods 2015;421:89–95.
|
[18] |
Dijkstra KK, Cattaneo CM, Weeber F, Chalabi M, van de Haar J, Fanchi LF, et al. Generation of tumor-reactive T cells by co-culture of peripheral blood lymphocytes and tumor organoids. Cell 2018;174(6):1586–98.e12.
|
[19] |
Jacob F, Salinas RD, Zhang DY, Nguyen PTT, Schnoll JG, Wong SZH, et al. A patient-derived glioblastoma organoid model and biobank recapitulates interand intra-tumoral heterogeneity. Cell 2020;180(1):188–204.e22.
|
[20] |
Schnalzger TE, de Groot MH, Zhang C, Mosa MH, Michels BE, Röder J, et al. 3D model for CAR-mediated cytotoxicity using patient-derived colorectal cancer organoids. EMBO J 2019;38(12):38.
|
[21] |
Villanueva A. Hepatocellular carcinoma. N Engl J Med 2019;380(15):1450–62.
|
[22] |
Zhao Y, Li ZX, Zhu YJ, Fu J, Zhao XF, Zhang YN, et al. Single-cell transcriptome analysis uncovers intratumoral heterogeneity and underlying mechanisms for drug resistance in hepatobiliary tumor organoids. Adv Sci 2021;8(11): e2003897.
|
[23] |
Liu C, Yang X, Duffy B, Mohanakumar T, Mitra RD, Zody MC, et al. ATHLATES: accurate typing of human leukocyte antigen through exome sequencing. Nucleic Acids Res 2013;41(14):e142.
|
[24] |
Kawaguchi S, Higasa K, Shimizu M, Yamada R, Matsuda F. HLA-HD: an accurate HLA typing algorithm for next-generation sequencing data. Hum Mutat 2017;38(7):788–97.
|
[25] |
Nariai N, Kojima K, Saito S, Mimori T, Sato Y, Kawai Y, et al. HLA-VBSeq: accurate HLA typing at full resolution from whole-genome sequencing data. BMC Genomics 2015;16(S2):S7.
|
[26] |
Zhang XO, Wang HB, Zhang Y, Lu X, Chen LL, Yang L. Complementary sequence-mediated exon circularization. Cell 2014;159(1):134–47.
|
[27] |
Wei Z, Zhou C, Zhang Z, Guan M, Zhang C, Liu Z, et al. The landscape of tumor fusion neoantigens: a pan-cancer analysis. iScience 2019;21:249–60.
|
[28] |
Wu T, Hu E, Xu S, Chen M, Guo P, Dai Z, et al. ClusterProfiler 4.0: a universal enrichment tool for interpreting omics data. Innovation 2021;2(3):100141.
|
[29] |
Wang X, Dong Y, Wu Z, Wang G, Shi Y, Zheng Y. Machine learning-based comparative analysis of pan-cancer and pan-normal tissues identifies pancancer tissue-enriched circRNAs related to cancer mutations as potential exosomal biomarkers. Front Oncol 2021;11:703461.
|
[30] |
Tian J, Fu Y, Li Q, Xu Y, Xi X, Zheng Y, et al. Differential expression and bioinformatics analysis of circRNA in PDGF-BB-induced vascular smooth muscle cells. Front Genet 2020;11:530.
|
[31] |
Li Z, Chen G, Cai Z, Dong X, He L, Qiu L, et al. Profiling of hepatocellular carcinoma neoantigens reveals immune microenvironment and clonal evolution related patterns. Chin J Cancer Res 2021;33(3):364–78.
|
[32] |
Newey A, Griffiths B, Michaux J, Pak HS, Stevenson BJ, Woolston A, et al. Immunopeptidomics of colorectal cancer organoids reveals a sparse HLA class I neoantigen landscape and no increase in neoantigens with interferon or MEK-inhibitor treatment. J Immunother Cancer 2019;7(1):309.
|
[33] |
Lorenzo-Herrero S, Sordo-Bahamonde C, Gonzalez S, López-Soto A. CD107a degranulation assay to evaluate immune cell antitumor activity. Methods Mol Biol 2019;1884:119–30.
|
[34] |
Sachs N, de Ligt J, Kopper O, Gogola E, Bounova G, Weeber F, et al. A living biobank of breast cancer organoids captures disease heterogeneity. Cell 2018;172(1–2):373–86.e10.
|
[35] |
Salzman J, Chen RE, Olsen MN, Wang PL, Brown PO. Cell-type specific features of circular RNA expression. PLoS Genet 2013;9(9):e1003777.
|
[36] |
Guarnerio J, Bezzi M, Jeong JC, Paffenholz SV, Berry K, Naldini MM, et al. Oncogenic role of fusion-circRNAs derived from cancer-associated chromosomal translocations. Cell 2016;165(2):289–302.
|
[37] |
Conn SJ, Pillman KA, Toubia J, Conn VM, Salmanidis M, Phillips CA, et al. The RNA binding protein quaking regulates formation of circRNAs. Cell 2015;160 (6):1125–34.
|
[38] |
Coulie PG, Lehmann F, Lethé B, Herman J, Lurquin C, Andrawiss M, et al. A mutated intron sequence codes for an antigenic peptide recognized by cytolytic T lymphocytes on a human melanoma. Proc Natl Acad Sci USA 1995;92(17):7976–80.
|
[39] |
Wang RF, Parkhurst MR, Kawakami Y, Robbins PF, Rosenberg SA. Utilization of an alternative open reading frame of a normal gene in generating a novel human cancer antigen. J Exp Med 1996;183(3):1131–40.
|
[40] |
Michaux A, Larrieu P, Stroobant V, Fonteneau JF, Jotereau F, van den Eynde BJ, et al. A spliced antigenic peptide comprising a single spliced amino acid is produced in the proteasome by reverse splicing of a longer peptide fragment followed by trimming. J Immunol 2014;192(4):1962–71.
|
[41] |
Smart AC, Margolis CA, Pimentel H, He MX, Miao D, Adeegbe D, et al. Intron retention is a source of neoepitopes in cancer. Nat Biotechnol 2018;36(11):1056–8.
|
[42] |
Hanada K, Yewdell JW, Yang JC. Immune recognition of a human renal cancer antigen through post-translational protein splicing. Nature 2004;427 (6971):252–6.
|
[43] |
Xiang R, Ma L, Yang M, Zheng Z, Chen X, Jia F, et al. Increased expression of peptides from non-coding genes in cancer proteomics datasets suggests potential tumor neoantigens. Commun Biol 2021;4(1):496.
|
[44] |
Kote S, Pirog A, Bedran G, Alfaro J, Dapic I. Mass spectrometry-based identification of MHC-associated peptides. Cancers 2020;12(3):12.
|
[45] |
Bassani-Sternberg M, Pletscher-Frankild S, Jensen LJ, Mann M. Mass spectrometry of human leukocyte antigen class I peptidomes reveals strong effects of protein abundance and turnover on antigen presentation. Mol Cell Proteomics 2015;14(3):658–73.
|
[46] |
Abelin JG, Keskin DB, Sarkizova S, Hartigan CR, Zhang W, Sidney J, et al. Mass spectrometry profiling of HLA-associated peptidomes in mono-allelic cells enables more accurate epitope prediction. Immunity 2017;46(2):315–26.
|
[47] |
Wilhelm M, Schlegl J, Hahne H, Gholami AM, Lieberenz M, Savitski MM, et al. Mass-spectrometry-based draft of the human proteome. Nature 2014;509 (7502):582–7.
|
[48] |
Liu T, Tan J, Wu M, Fan W, Wei J, Zhu B, et al. High-affinity neoantigens correlate with better prognosis and trigger potent antihepatocellular carcinoma (HCC) activity by activating CD39+ CD8+ T cells. Gut 2021;70 (10):1965–77.
|
[49] |
Shi R, Tang YQ, Miao H. Metabolism in tumor microenvironment: implications for cancer immunotherapy. MedComm 2020;1(1):47–68.
|
/
〈 | 〉 |