Achieving 12.0% Solar-to-Hydrogen Efficiency with a Trimetallic-Layer-Protected and Catalyzed Silicon Photoanode Coupled with an Inexpensive Silicon Solar Cell
Received date: 30 Jul 2021
Published date: 24 Jan 2023
n-Type silicon (n-Si), with surface easily oxidized and passivated in an aqueous electrolyte, has suffered from sluggish oxygen evolution reaction (OER) kinetics for photoelectrochemical (PEC) water splitting. Herein, a trimetallic Ni0.9Fe0.05Co0.05 protective layer is successfully electrodeposited on a p+n-Si substrate by underpotential deposition. The prepared Ni0.9Fe0.05Co0.05/p+n-Si photoanode exhibits excellent stability and activity for PEC water oxidation, with a low onset potential of 0.938 V versus a reversible hydrogen electrode (RHE) and a remarkable photocurrent density of about 33.1 mA∙cm-2 at 1.23 V versus RHE, which significantly outperforms the Ni/p+n-Si photoanode as a reference. It is revealed that the incorporation of Fe into the Ni layer creates a large band bending at the Ni0.9Fe0.05Co0.05/p+n-Si interface, promoting interfacial charge separation. Moreover, the incorporation of Co produces abundant Ni3+ and oxygen vacancies (Ov) that act as active sites to accelerate the OER kinetics, synergistically contributing to a major enhancement of PEC water oxidation activity. Encouragingly, by connecting the Ni0.9Fe0.05Co0.05/p+n-Si photoanode to an inexpensive Si solar cell, an integrated photovoltaic/PEC (PV/PEC) device achieved a solar-to-hydrogen conversion efficiency of as high as 12.0% without bias. This work provides a facile approach to design efficient and stable n-Si-based photoanodes with a deep understanding of the structure–activity relationship, which exhibits great potential for the integration of low-cost PV/PEC devices for unassisted solar-driven water splitting.
Lingyun He , Xin Hong , Yiqing Wang , Zhonghang Xing , Jiafeng Geng , Penghui Guo , Jinzhan Su , Shaohua Shen . Achieving 12.0% Solar-to-Hydrogen Efficiency with a Trimetallic-Layer-Protected and Catalyzed Silicon Photoanode Coupled with an Inexpensive Silicon Solar Cell[J]. Engineering, 2023 , 25(6) : 128 -137 . DOI: 10.1016/j.eng.2022.03.023
[1] |
Lewis NS, Nocera DG. Powering the planet: chemical challenges in solar energy utilization. Proc Natl Acad Sci USA 2006;103(43):15729‒35. Corrected in: Proc Natl Acad Sci USA 2007;104(50):20142.
|
[2] |
Vijselaar W, Kunturu PP, Moehl T, Tilley SD, Huskens J. Tandem cuprous oxide/ silicon microwire hydrogen-evolving photocathode with photovoltage exceeding 1.3 V. ACS Energy Lett 2019;4(9):2287‒94.
|
[3] |
Sun K, Shen S, Liang Y, Burrows PE, Mao SS, Wang D. Enabling silicon for solarfuel production. Chem Rev 2014;114(17):8662‒719.
|
[4] |
Chu S, Vanka S, Wang Y, Gim J, Wang Y, Ra YH, et al. Solar water oxidation by an InGaN nanowire photoanode with a bandgap of 1.7 eV. ACS Energy Lett 2018;3(2):307‒14.
|
[5] |
Shaner MR, Hu S, Sun K, Lewis NS. Stabilization of Si microwire arrays for solardriven H2O oxidation to O2(g) in 1.0 M KOH(aq) using conformal coatings of amorphous TiO2. Energy Environ Sci 2015;8(1):203‒7.
|
[6] |
Mei B, Seger B, Pedersen T, Malizia M, Hansen O, Chorkendorff I, et al. Protection of p+-n-Si photoanodes by sputter-deposited Ir/IrOx thin films. J Phys Chem Lett 2014;5(11):1948‒52.
|
[7] |
Scheuermann AG, Lawrence JP, Kemp KW, Ito T, Walsh A, Chidsey CED, et al. Design principles for maximizing photovoltage in metal-oxide-protected water-splitting photoanodes. Nat Mater 2016;15(1):99‒105.
|
[8] |
Hu S, Shaner MR, Beardslee JA, Lichterman M, Brunschwig BS, Lewis NS. Amorphous TiO2 coatings stabilize Si, GaAs, and GaP photoanodes for efficient water oxidation. Science 2014;344(6187):1005‒9.
|
[9] |
Yu Y, Sun C, Yin X, Li J, Cao S, Zhang C, et al. Metastable intermediates in amorphous titanium oxide: a hidden role leading to ultra-stable photoanode protection. Nano Lett 2018;18(8):5335‒42.
|
[10] |
Kenney MJ, Gong M, Li Y, Wu JZ, Feng J, Lanza M, et al. High-performance silicon photoanodes passivated with ultrathin nickel films for water oxidation. Science 2013;342(6160):836‒40.
|
[11] |
Sun K, McDowell MT, Nielander AC, Hu S, Shaner MR, Yang F, et al. Stable solardriven water oxidation to O2(g) by Ni-oxide-coated silicon photoanodes. J Phys Chem Lett 2015;6(4):592‒8.
|
[12] |
Thalluri SM, Bai L, Lv C, Huang Z, Hu X, Liu L. Strategies for semiconductor/electrocatalyst coupling toward solar-driven water splitting. Adv Sci 2020;7(6):1902102.
|
[13] |
Hill JC, Landers AT, Switzer JA. An electrodeposited inhomogeneous metal‒insulator‒semiconductor junction for efficient photoelectrochemical water oxidation. Nat Mater 2015;14(11):1150‒5.
|
[14] |
Zhou X, Liu R, Sun K, Friedrich D, McDowell MT, Yang F, et al. Interface engineering of the photoelectrochemical performance of Ni-oxide-coated n-Si photoanodes by atomic-layer deposition of ultrathin films of cobalt oxide. Energy Environ Sci 2015;8(9):2644‒9.
|
[15] |
Oh S, Jung S, Lee YH, Song JT, Kim TH, Nandi DK, et al. Hole-selective CoOx/SiOx/ Si heterojunctions for photoelectrochemical water splitting. ACS Catal 2018;8 (10):9755‒64.
|
[16] |
Chen L, Wu S, Ma D, Shang A, Li X. Optoelectronic modeling of the Si/a-Fe2O3 heterojunction photoanode. Nano Energy 2018;43(10):177‒83.
|
[17] |
Mei B, Permyakova AA, Frydendal R, Bae D, Pedersen T, Malacrida P, et al. Irontreated NiO as a highly transparent p-type protection layer for efficient Sibased photoanodes. J Phys Chem Lett 2014;5(20):3456‒61.
|
[18] |
Cai Q, Hong W, Jian C, Liu W. Ultrafast hot ion-exchange triggered electrocatalyst modification and interface engineering on silicon photoanodes. Nano Energy 2020;70:104485.
|
[19] |
Yu X, Yang P, Chen S, Zhang M, Shi G. NiFe alloy protected silicon photoanode for efficient water splitting. Adv Energy Mater 2017;7(6):1601805.
|
[20] |
Cai Q, Hong W, Jian C, Li J, Liu W. Insulator layer engineering toward stable Si photoanode for efficient water oxidation. ACS Catal 2018;8(10):9238‒44.
|
[21] |
Li C, Huang M, Zhong Y, Zhang L, Xiao Y, Zhu H. Highly efficient NiFe nanoparticle decorated Si photoanode for photoelectrochemical water oxidation. Chem Mater 2019;31(1):171‒8.
|
[22] |
Chen J, Xu G, Wang C, Zhu K, Wang H, Yan S, et al. High-performance and stable silicon photoanode modified by crystalline Ni@amorphous Co core‒shell nanoparticles. ChemCatChem 2018;10(21):5025‒31.
|
[23] |
Lee Y, Suntivich J, May KJ, Perry EE, Shao-Horn Y. Synthesis and activities of rutile IrO2 and RuO2 nanoparticles for oxygen evolution in acid and alkaline solutions. J Phys Chem Lett 2012;3(3):399‒404.
|
[24] |
Stoerzinger KA, Qiao L, Biegalski MD, Shao-Horn Y. Orientation-dependent oxygen evolution activities of rutile IrO2 and RuO2. J Phys Chem Lett 2014;5(10):1636‒41.
|
[25] |
Kim TJ, Park SA, Chang S, Chun HH, Kim YT. Effect of a surface area and a dband oxidation state on the activity and stability of RuOx electrocatalysts for oxygen evolution reaction. Bull Korean Chem Soc 2015;36(7):1874‒7.
|
[26] |
Biesinger MC, Payne BP, Grosvenor AP, Lau LWM, Gerson AR, Smart RSC. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Appl Surf Sci 2011;257(7):2717‒30.
|
[27] |
Biesinger MC, Payne BP, Lau LWM, Gerson A, Smart RSC. X-ray photoelectron spectroscopic chemical state quantification of mixed nickel metal, oxide and hydroxide systems. Surf Interface Anal 2009;41(4):324‒32.
|
[28] |
Kim KS, Winograd N. X-ray photoelectron spectroscopic studies of nickel‒ oxygen surfaces using oxygen and argon ion-bombardment. Surf Sci 1974;43(2):625‒43.
|
[29] |
Guo B, Batool A, Xie G, Boddula R, Tian L, Jan SU, et al. Facile integration between Si and catalyst for high-performance photoanodes by a multifunctional bridging layer. Nano Lett 2018;18(2):1516‒21.
|
[30] |
Oh K, Mériadec C, Lassalle-Kaiser B, Dorcet V, Fabre B, Ababou-Girard S, et al. Elucidating the performance and unexpected stability of partially coated water-splitting silicon photoanodes. Energy Environ Sci 2018;11(9):2590‒9.
|
[31] |
Cai Q, Hong W, Jian C, Liu W. A high-performance silicon photoanode enabled by oxygen vacancy modulation on NiOOH electrocatalyst for water oxidation. Nanoscale 2020;12(14):7550‒6.
|
[32] |
Peng Z, Jia DS, Al-Enizi AM, Elzatahry AA, Zheng GF. From water oxidation to reduction: homologous Ni‒Co based nanowires as complementary water splitting electrocatalysts. Adv Energy Mater 2015;5(9):1402031.
|
[33] |
Chen JZ, Xu JL, Zhou S, Zhao N, Wong CP. Amorphous nanostructured FeOOH and Co‒Ni double hydroxides for high-performance aqueous asymmetric supercapacitors. Nano Energy 2016;21:145‒53.
|
[34] |
Dong G, Fang M, Zhang J, Wei RJ, Shu L, Liang XG, et al. In situ formation of highly active Ni‒Fe based oxygen-evolving electrocatalysts via simple reactive dip-coating. J Mater Chem A 2017;5(22):11009‒15.
|
[35] |
Yang J, Liu H, Martens WN, Frost RL. Synthesis and characterization of cobalt hydroxide, cobalt oxyhydroxide, and cobalt oxide nanodiscs. J Phys Chem C 2010;114(1):111‒9.
|
[36] |
Jiménez VM, Fernández A, Espinós JP, González-Elipe AR. The state of the oxygen at the surface of polycrystalline cobalt oxide. J Electron Spectrosc 1995;71(1):61‒71.
|
[37] |
Bao J, Zhang X, Fan B, Zhang J, Zhou M, Yang W, et al. Ultrathin spinel-structured nanosheets rich in oxygen deficiencies for enhanced electrocatalytic water oxidation. Angew Chem Int Ed Engl 2015;54(25):7399‒404.
|
[38] |
Yang J, Cooper JK, Toma FM, Walczak KA, Favaro M, Beeman JW, et al. A multifunctional biphasic water splitting catalyst tailored for integration with high-performance semiconductor photoanodes. Nat Mater 2017;16(3):335‒41.
|
[39] |
Asnavandi M, Yin Y, Li Y, Sun C, Zhao C. Promoting oxygen evolution reactions through introduction of oxygen vacancies to benchmark NiFe‒OOH catalysts. ACS Energy Lett 2018;3(7):1515‒20.
|
[40] |
Zhao Y, Nakamura R, Kamiya K, Nakanishi S, Hashimoto K. Nitrogen-doped carbon nanomaterials as non-metal electrocatalysts for water oxidation. Nat Commun 2013;4(1):2390.
|
[41] |
Gurrentz JM, Rose MJ. Non-catalytic benefits of Ni(II) binding to an Si(111)-PNP construct for photoelectrochemical hydrogen evolution reaction: metal ion induced flat band potential modulation. J Am Chem Soc 2020;142 (12):5657‒67.
|
[42] |
Wang X, Xie J, Li CM. Architecting smart “umbrella” Bi2S3/rGO-modified TiO2 nanorod array structures at the nanoscale for efficient photoelectrocatalysis under visible light. J Mater Chem A 2015;3(3):1235‒42.
|
[43] |
McCrory CCL, Jung S, Ferrer IM, Chatman SM, Peters JC, Jaramillo TF. Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices. J Am Chem Soc 2015;137(13):4347‒57.
|
[44] |
Li M, Zhao Z, Cheng T, Fortunelli A, Chen CY, Yu R, et al. Ultrafine jagged platinum nanowires enable ultrahigh mass activity for the oxygen reduction reaction. Science 2016;354(6318):1414‒9.
|
[45] |
Bikkarolla SK, Papakonstantinou P. CuCo2O4 nanoparticles on nitrogenated graphene as highly efficient oxygen evolution catalyst. J Power Sources 2015;281:243‒51.
|
[46] |
Klahr B, Gimenez S, Fabregat-Santiago F, Hamann T, Bisquert J. Water oxidation at hematite photoelectrodes: the role of surface states. J Am Chem Soc 2012;134(9):4294‒302.
|
[47] |
Fu Y, Lu YR, Ren F, Xing Z, Chen J, Guo P, et al. Surface electronic structure reconfiguration of hematite nanorods for efficient photoanodic water oxidation. Solar RRL 2020;4(1):1900349.
|
[48] |
Zhang B, Wang Z, Huang B, Zhang X, Qin X, Li H, et al. Anisotropic photoelectrochemical (PEC) performances of ZnO single-crystalline photoanode: effect of internal electrostatic fields on the separation of photogenerated charge carriers during PEC water splitting. Chem Mater 2016;28(18):6613‒20.
|
[49] |
Geng W, Liu H, Yao X. Enhanced photocatalytic properties of titania‒graphene nanocomposites: a density functional theory study. Phys Chem Chem Phys 2013;15(16):6025‒33.
|
/
〈 | 〉 |