Characterization of a Novel Gene, srpA, Conferring Resistance to Streptogramin A, Pleuromutilins, and Lincosamides in Streptococcus suis
Received date: 05 Aug 2020
Published date: 24 Jan 2022
Antimicrobial resistance is undoubtedly one of the greatest global health threats. The emergence of multidrug-resistant (MDR) Gram-positive pathogens, such as methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococcus faecium (VRE), and β-lactamase-resistant Streptococcus pneumonia, has severely limited our antibiotic arsenal. Numerous ribosome-targeting antibiotics, especially pleuromutilins, oxazolidinones, and streptogramins, are viewed as promising alternatives against aggressive MDR pathogens. In this study, we identified a new adenosine triphosphate (ATP)-binding cassete (ABC)-F family determinant, srpA, in Streptococcus suis (S. suis) by means of a comparative analysis of the whole-genome sequences of tiamulin (TIA)-resistant and TIA-sensitive bacteria. Functional cloning confirmed that the deduced gene can mediate cross-resistance to pleuromutilins, lincosamides, and streptogramin A in S. suis and S. aureus. A sequence alignment revealed that SrpA shares the highest amino acid identity with Vga(E) (36%) and shows canonical characteristics of ABC-F family members. In SrpA-ribosome docked compounds, the extended loop region of SrpA approaches the valnemulinbinding pocket in the ribosome peptidyl-transferase center and competes with bound valnemulin. A detailed mutational analysis of the loop residues confirmed that this domain is crucial for SrpA activity, as substitutions or truncations of this region affect the efficiency and specificity of antibiotic resistance. Intracellular antibiotics accumulation indicated that SrpA does not act as an efflux pump, while a ribosome binding assay supported the protective effects of SrpA on the ribosome by preventing antibiotic binding as well as displacing bound drugs. These findings clarify the mechanisms underlying resistance to ribosomal antibiotics.
Key words: SrpA; Streptococcus suis; Antibiotic resistance; Ribosome; ABC-F family proteins
Chaoyang Zhang , Lu Liu , Peng Zhang , Jingpo Cui , Xiaoxia Qin , Lichao Ma , Kun Han , Zhanhui Wang , Shaolin Wang , Shuangyang Ding , Zhangqi Shen . Characterization of a Novel Gene, srpA, Conferring Resistance to Streptogramin A, Pleuromutilins, and Lincosamides in Streptococcus suis[J]. Engineering, 2022 , 9(2) : 85 -94 . DOI: 10.1016/j.eng.2020.12.015
[1] |
Liu YY, Wang Y, Walsh TR, Yi LX, Zhang R, Spencer J, et al. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infect Dis 2016;16(2):161–8.
|
[2] |
Eyal Z, Matzov D, Krupkin M, Wekselman I, Paukner S, Zimmerman E, et al. Structural insights into species-specific features of the ribosome from the pathogen Staphylococcus aureus. Proc Natl Acad Sci USA 2015;112(43): E5805–14.
|
[3] |
Karaman R, Jubeh B, Breijyeh Z. Resistance of Gram-positive bacteria to current antibacterial agents and overcoming approaches. Molecules 2020;25 (12):2888.
|
[4] |
Wilson DN. Ribosome-targeting antibiotics and mechanisms of bacterial resistance. Nat Rev Microbiol 2014;12(1):35–48.
|
[5] |
Arenz S, Wilson DN. Bacterial protein synthesis as a target for antibiotic inhibition. Cold Spring Harb Perspect Med 2016;6(9):a025361.
|
[6] |
Wilson DN. The A–Z of bacterial translation inhibitors. Crit Rev Biochem Mol Biol 2009;44(6):393–433.
|
[7] |
Schwarz S, Shen J, Kadlec K, Wang Y, Michael GB, Feßler AT, et al. Lincosamides, streptogramins, phenicols, and pleuromutilins: mode of action and mechanisms of resistance. Cold Spring Harb Perspect Med 2016;6(11): a027037.
|
[8] |
Li Q, Seiple IB. Modular, scalable synthesis of group a streptogramin antibiotics. J Am Chem Soc 2017;139(38):13304–7.
|
[9] |
Fu Y, Ma L, Yi Y, Fan Y, Liang J, Shang R. A new pleuromutilin candidate with potent antibacterial activity against Pasteurella multocida. Microb Pathog 2019;127:202–7.
|
[10] |
Sader HS, Biedenbach DJ, Paukner S, Ivezic-Schoenfeld Z, Jones RN. Antimicrobial activity of the investigational pleuromutilin compound BC3781 tested against Gram-positive organisms commonly associated with acute bacterial skin and skin structure infections. Antimicrob Agents Chemother 2012;56(3):1619–23.
|
[11] |
Dillon C, Guarascio AJ, Covvey JR. Lefamulin: a promising new pleuromutilin antibiotic in the pipeline. Expert Rev Anti Infect Ther 2019;17(1):5–15.
|
[12] |
Polacek N, Mankin AS. The ribosomal peptidyl transferase center: structure, function, evolution, inhibition. Crit Rev Biochem Mol Biol 2005;40 (5):285–311.
|
[13] |
Gürel G, Blaha G, Moore PB, Steitz TA. U2504 determines the species specificity of the a-site cleft antibiotics: the structures of tiamulin, homoharringtonine, and bruceantin bound to the ribosome. J Mol Biol 2009;389(1):146–56.
|
[14] |
Eyal Z, Matzov D, Krupkin M, Paukner S, Riedl R, Rozenberg H, et al. A novel pleuromutilin antibacterial compound, its binding mode and selectivity mechanism. Sci Rep 2016;6(1):39004.
|
[15] |
Deng F, Wang H, Liao Y, Li J, Feßler AT, Michael GB, et al. Detection and genetic environment of pleuromutilin-lincosamide-streptogramin A resistance genes in Staphylococci isolated from pets. Front Microbiol 2017;8:234.
|
[16] |
Hawkins PA, Law CS, Metcalf BJ, Chochua S, Jackson DM, Westblade LF, et al. Cross-resistance to lincosamides, streptogramins A and pleuromutilins in Streptococcus agalactiae isolates from the USA. J Antimicrob Chemother 2017;72(7):1886–92.
|
[17] |
Gurung M, Tamang MD, Moon DC, Kim SR, Jeong JH, Jang GC, et al. Molecular basis of resistance to selected antimicrobial agents in the emerging zoonotic pathogen Streptococcus suis. J Clin Microbiol 2015;53(7):2332–6.
|
[18] |
Szemraj M, Czekaj T, Kalisz J, Szewczyk EM. Differences in distribution of MLS antibiotics resistance genes in clinical isolates of staphylococci belonging to species: S. epidermidis, S. hominis, S. haemolyticus, S. simulans and S. warneri. BMC Microbiol 2019;19(1):124.
|
[19] |
Wilson DN. The ABC of ribosome-related antibiotic resistance. mBio 2016;7 (3):e00598–e616.
|
[20] |
Ousalem F, Singh S, Chesneau O, Hunt JF, Boël G. ABC-F proteins in mRNA translation and antibiotic resistance. Res Microbiol 2019;170(8):435–47.
|
[21] |
Sharkey LKR, O’Neill AJ. Antibiotic resistance ABC-F proteins: bringing target protection into the limelight. ACS Infect Dis 2018;4(3):239–46.
|
[22] |
Murina V, Kasari M, Hauryliuk V, Atkinson GC. Antibiotic resistance ABCF proteins reset the peptidyl transferase centre of the ribosome to counter translational arrest. Nucleic Acids Res 2018;46(7):3753–63.
|
[23] |
Su W, Kumar V, Ding Y, Ero R, Serra A, Lee BST, et al. Ribosome protection by antibiotic resistance ATP-binding cassette protein. Proc Natl Acad Sci USA 2018;115(20):5157–62.
|
[24] |
Crowe-McAuliffe C, Graf M, Huter P, Takada H, Abdelshahid M, Novácˇek J, et al. Structural basis for antibiotic resistance mediated by the Bacillus subtilis ABCF ATPase VmlR. Proc Natl Acad Sci USA 2018;115(36):8978–83.
|
[25] |
Sharkey LKR, Edwards TA, O’Neill AJ. ABC-F proteins mediate antibiotic resistance through ribosomal protection. MBio 2016;7(2):e01975.
|
[26] |
Lun Z, Wang Q, Chen X, Li A, Zhu X. Streptococcus suis: an emerging zoonotic pathogen. Lancet Infect Dis 2007;7(3):201–9.
|
[27] |
Palmieri C, Varaldo PE, Facinelli B. Streptococcus suis, an emerging drugresistant animal and human pathogen. Front Microbiol 2011;2:235.
|
[28] |
Huang J, Ma J, Shang K, Hu X, Liang Y, Li D, et al. Evolution and diversity of the antimicrobial resistance associated mobilome in Streptococcus suis: a probable mobile genetic elements reservoir for other streptococci. Front Cell Infect Microbiol 2016;6:118.
|
[29] |
Li J, Li B, Wendlandt S, Schwarz S, Wang Y, Wu C, et al. Identification of a novel vga(E) gene variant that confers resistance to pleuromutilins, lincosamides and streptogramin A antibiotics in staphylococci of porcine origin. J Antimicrob Chemother 2014;69(4):919–23.
|
[30] |
Xing J, Li X, Sun Y, Zhao J, Miao S, Xiong Q, et al. Comparative genomic and functional analysis of Akkermansia muciniphila and closely related species. Genes Genomics 2019;41(11):1253–64.
|
[31] |
Douarre PE, Sauvage E, Poyart C, Glaser P. Host specificity in the diversity and transfer of lsa resistance genes in group B Streptococcus. J Antimicrob Chemother 2015;70(12):3205–13.
|
[32] |
Wang X, Wang Y, Zhou Y, Li J, Yin W, Wang S, et al. Emergence of a novel mobile colistin resistance gene, mcr-8, in NDM-producing Klebsiella pneumoniae. Emerg Microbes Infect 2018;7:122.
|
[33] |
Elekofehinti OO, Aladenika YV, Alli-Smith YR, Ejelonu OC, Lawal AO. Molecular modeling, dynamics simulation and characterization of human inositol hexakisphosphate kinase 1 (IP6K1) related to diabetes. J Appl Sci Environ Manag 2019;23(3):461.
|
[34] |
Wang Y, Li X, Wang Y, Schwarz S, Shen J, Xia X. Intracellular accumulation of linezolid and florfenicol in optrA-producing Enterococcus faecalis and Staphylococcus aureus. Molecules 2018;23(12):3195.
|
[35] |
Wu JY, Kim JJ, Reddy R, Wang WM, Graham DY, Kwon DH. Tetracyclineresistant clinical Helicobacter pylori isolates with and without mutations in 16S rRNA-encoding genes. Antimicrob Agents Chemother 2005;49(2): 578–583.
|
[36] |
Zhang H, Mi T, Khan OY, Sheng Y, Eremin SA, Beier RC, et al. Fluorescence polarization immunoassay using IgY antibodies for detection of valnemulin in swine tissue. Anal Bioanal Chem 2015;407(25):7843–8.
|
[37] |
Mi T, Wang Z, Eremin SA, Shen J, Zhang S. Simultaneous determination of multiple (fluoro)quinolone antibiotics in food samples by a one-step fluorescence polarization immunoassay. J Agric Food Chem 2013;61 (39):9347–55.
|
[38] |
Barton BM, Harding GP, Zuccarelli AJ. A general method for detecting and sizing large plasmids. Anal Biochem 1995;226(2):235–40.
|
[39] |
Ohki R, Tateno K, Takizawa T, Aiso T, Murata M. Transcriptional termination control of a novel ABC transporter gene involved in antibiotic resistance in Bacillus subtilis. J Bacteriol 2005;187(17):5946–54.
|
[40] |
Boël G, Smith PC, Ning W, Englander MT, Chen B, Hashem Y, et al. The ABC-F protein EttA gates ribosome entry into the translation elongation cycle. Nat Struct Mol Biol 2014;21(2):143–51.
|
[41] |
Jacquet E, Girard JM, Ramaen O, Pamlard O, Lévaique H, Betton JM, et al. ATP hydrolysis and pristinamycin IIA inhibition of the Staphylococcus aureus Vga(A), a dual ABC protein involved in streptogramin A resistance. J Biol Chem 2008;283(37):25332–9.
|
[42] |
Lenart J, Vimberg V, Vesela L, Janata J, Novotna GB. Detailed mutational analysis of Vga(A) interdomain linker: implication for antibiotic resistance specificity and mechanism. Antimicrob Agents Chemother 2015;59 (2):1360–4.
|
[43] |
Florey HW. Penicillin: its development for medical uses. Nature 1944;153:40–2.
|
[44] |
Zhu W, Wu C, Sun X, Zhang A, Zhu J, Hua Y, et al. Characterization of Streptococcus suis serotype 2 isolates from China. Vet Microbiol 2013;166(3– 4):527–34.
|
[45] |
Gottschalk M, Xu J, Calzas C, Segura M. Streptococcus suis: a new emerging or an old neglected zoonotic pathogen? Future Microbiol 2010;5(3): 371–391.
|
[46] |
Zhang C, Zhang P, Wang Y, Fu L, Liu L, Xu D, et al. Capsular serotypes, antimicrobial susceptibility, and the presence of transferable oxazolidinone resistance genes in Streptococcus suis isolated from healthy pigs in China. Vet Microbiol 2020;247:108750.
|
[47] |
Feng Y, Zhang H, Wu Z, Wang S, Cao M, Hu D, et al. Streptococcus suis infection: an emerging/reemerging challenge of bacterial infectious diseases? Virulence 2014;5(4):477–97.
|
[48] |
Jaberi S, Fallah F, Hashemi A, Karimi AM, Azimi L. Inhibitory effects of curcumin on the expression of NorA efflux pump and reduce antibiotic resistance in Staphylococcus aureus. J Pure Appl Microbiol 2018;12(1): 95–102.
|
[49] |
Card RM, Stubberfield E, Rogers J, Nunez-Garcia J, Ellis RJ, AbuOun M, et al. Identification of a new antimicrobial resistance gene provides fresh insights into pleuromutilin resistance in Brachyspira hyodysenteriae, aetiological agent of swine dysentery. Front Microbiol 2018;9:1183.
|
[50] |
Chowdhury SA, Arias CA, Nallapareddy SR, Reyes J, Willems RJL, Murray BE. A trilocus sequence typing scheme for hospital epidemiology and subspecies differentiation of an important nosocomial pathogen Enterococcus faecalis. J Clin Microbiol 2009;47(9):2713–9.
|
[51] |
Hot C, Berthet N, Chesneau O. Characterization of sal(A), a novel gene responsible for lincosamide and streptogramin A resistance in Staphylococcus sciuri. Antimicrob Agents Chemother 2014;58(6):3335–41.
|
[52] |
Du F, Lv X, Duan D, Wang L, Huang J. characterization of a linezolid- and vancomycin-resistant Streptococcus suis isolate that harbors optrA and vanG operons. Front Microbiol 2019;10:2026.
|
/
〈 | 〉 |