Analog Optical Computing for Artificial Intelligence
Received date: 23 Nov 2020
Published date: 24 Jan 2022
The rapid development of artificial intelligence (AI) facilitates various applications from all areas but also poses great challenges in its hardware implementation in terms of speed and energy because of the explosive growth of data. Optical computing provides a distinctive perspective to address this bottleneck by harnessing the unique properties of photons including broad bandwidth, low latency, and high energy efficiency. In this review, we introduce the latest developments of optical computing for different AI models, including feedforward neural networks, reservoir computing, and spiking neural networks (SNNs). Recent progress in integrated photonic devices, combined with the rise of AI, provides a great opportunity for the renaissance of optical computing in practical applications. This effort requires multidisciplinary efforts from a broad community. This review provides an overview of the state-of-the-art accomplishments in recent years, discusses the availability of current technologies, and points out various remaining challenges in different aspects to push the frontier. We anticipate that the era of large-scale integrated photonics processors will soon arrive for practical AI applications in the form of hybrid optoelectronic frameworks.
Jiamin Wu , Xing Lin , Yuchen Guo , Junwei Liu , Lu Fang , Shuming Jiao , Qionghai Dai . Analog Optical Computing for Artificial Intelligence[J]. Engineering, 2022 , 10(3) : 133 -145 . DOI: 10.1016/j.eng.2021.06.021
[1] |
He K, Zhang X, Ren S, Sun J. Delving deep into rectifiers: surpassing humanlevel performance on imagenet classification. In: Proceedings of the IEEE international conference on computer vision; 2015 Dec 7–13; Santiago, Chile. p. 1026–34.
|
[2] |
Wu B, Iandola F, Jin PH, Keutzer K. Squeezedet: unified, small, low power fully convolutional neural networks for real-time object detection for autonomous driving. In: Proceedings of the IEEE conference on computer vision and pattern recognition workshops; 2017 Jul 21–6. Honolulu, HI, USA. p. 446–54.
|
[3] |
Silver D, Huang A, Maddison CJ, Guez A, Sifre L, van den Driessche G, et al. Mastering the game of Go with deep neural networks and tree search. Nature 2016;529(7587):484–9.
|
[4] |
Singh S, Okun A, Jackson A. Artificial intelligence: learning to play Go from scratch. Nature 2017;550(7676):336–7.
|
[5] |
Wang Y, Ji M, Jiang S, Wang X, Wu J, Duan F, et al. Augmenting vascular disease diagnosis by vasculature-aware unsupervised learning. Nat Mach Intell 2020;2:337–46.
|
[6] |
De Fauw J, Ledsam JR, Romera-Paredes B, Nikolov S, Tomasev N, Blackwell S, et al. Clinically applicable deep learning for diagnosis and referral in retinal disease. Nat Med 2018;24(9):1342–50.
|
[7] |
LeCun Y, Bengio Y, Hinton G. Deep learning. Nature 2015;521(7553):436–44.
|
[8] |
Zhang W, Gao B, Tang J, Yao P, Yu S, Chang M-F, et al. Neuro-inspired computing chips. Nat Electron 2020;3(7):371–82.
|
[9] |
Adam GC, Khiat A, Prodromakis T. Challenges hindering memristive neuromorphic hardware from going mainstream. Nat Commun 2018;9 (1):1–4.
|
[10] |
Wu F, Lu C, Zhu M, Chen H, Zhu J, Yu K, et al. Towards a new generation of artificial intelligence in China. Nat Mach Intell 2020;2(6):312–6.
|
[11] |
Huang C, Barbera SL, Small C. Building brain-inspired computing. Nat Commun 2019;10(1):1–6.
|
[12] |
Zhang Y, Qu P, Ji Y, Zhang W, Gao G, Wang G, et al. A system hierarchy for brain-inspired computing. Nature 2020;586(7829):378–84.
|
[13] |
Jouppi NP, Young C, Patil N, Patterson D, Agrawal G, Bajwa R, et al. Indatacenter performance analysis of a tensor processing unit. In: Proceedings of the 44th Annual International Symposium on Computer Architecture. 2017 Jun 24–8; Toronto, ON, Canada. p. 1–12.
|
[14] |
Pei J, Deng L, Song S, Zhao M, Zhang Y, Wu S, et al. Towards artificial general intelligence with hybrid Tianjic chip architecture. Nature 2019;572 (7767):106–11.
|
[15] |
Yao P, Wu H, Gao B, Tang J, Zhang Q, Zhang W, et al. Fully hardwareimplemented memristor convolutional neural network. Nature 2020;577 (7792):641–6.
|
[16] |
Miller DAB. Attojoule optoelectronics for low-energy information processing and communications. J Light Technol 2017;35(3):346–96.
|
[17] |
Burr GW. A role for optics in AI hardware. Nature 2019;569(7755):199–200.
|
[18] |
Wetzstein G, Ozcan A, Gigan S, Fan S, Englund D, Soljacˇic´ M, et al. Inference in artificial intelligence with deep optics and photonics. Nature 2020;588:39–47.
|
[19] |
Xu X, Tan M, Corcoran B, Wu J, Nguyen TG, Boes A, et al. Photonic perceptron based on a Kerr microcomb for high-speed, scalable, optical neural networks. Laser Photon Rev 2020;14(10):2000070.
|
[20] |
Le ST, Aref V, Buelow H. Nonlinear signal multiplexing for communication beyond the Kerr nonlinearity limit. Nat Photonics 2017;11(9):570–6.
|
[21] |
Devlin RC, Ambrosio A, Rubin NA, Mueller JPB, Capasso F. Arbitrary spin-toorbital angular momentum conversion of light. Science 2017;358 (6365):896–901.
|
[22] |
Ji Z, Liu W, Krylyuk S, Fan X, Zhang Z, Pan A, et al. Photocurrent detection of the orbital angular momentum of light. Science 2020;368(6492):763–7.
|
[23] |
Han J-H, Boeuf F, Fujikata J, Takahashi S, Takagi S, Takenaka M. Efficient lowloss InGaAsP/Si hybrid MOS optical modulator. Nat Photonics 2017;11 (8):486–90.
|
[24] |
Ferrera M, Razzari L, Duchesne D, Morandotti R, Yang Z, Liscidini M, et al. Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures. Nat Photonics 2008;2(12):737–40.
|
[25] |
Alexoudi T, Terzenidis N, Pitris S, Moralis-Pegios M, Maniotis P, Vagionas C, et al. Optics in computing: from photonic network-on-chip to chip-to-chip interconnects and disintegrated architectures. J Light Technol 2019;37 (2):363–79.
|
[26] |
Sawchuk AA, Strand TC. Digital optical computing. Proc IEEE 1984;72 (7):758–79.
|
[27] |
Wang W, Jin G, Yan Y, Wu M. Image feature extraction with the optical Haar wavelet transform. Opt Eng 1995;34(4):1238–42.
|
[28] |
Solli DR, Jalali B. Analog optical computing. Nat Photonics 2015;9(11):704–6.
|
[29] |
Farhat NH, Psaltis D, Prata A, Paek E. Optical implementation of the Hopfield model. Appl Opt 1985;24(10):1469–75.
|
[30] |
Nozaki K, Matsuo S, Fujii T, Takeda K, Shinya A, Kuramochi E, et al. Femtofarad optoelectronic integration demonstrating energy-saving signal conversion and nonlinear functions. Nat Photonics 2019;13(7):454–9.
|
[31] |
Li M, Ling J, He Y, Javid UA, Xue S, Lin Q. Lithium niobate photonic-crystal electro-optic modulator. Nat Commun 2020;11(4123):1–8.
|
[32] |
Mauthe S, Baumgartner Y, Sousa M, Ding Q, Rossell MD, Schenk A, et al. Highspeed III-V nanowire photodetector monolithically integrated on Si. Nat Commun 2020;11(4565):1–7.
|
[33] |
Stern B, Ji X, Okawachi Y, Gaeta AL, Lipson M. Battery-operated integrated frequency comb generator. Nature 2018;562(7727):401–5.
|
[34] |
Feldmann J, Youngblood N, Wright CD, Bhaskaran H, Pernice WHP. All-optical spiking neurosynaptic networks with self-learning capabilities. Nature 2019;569(7755):208–14.
|
[35] |
Böhm F, Verschaffelt G, Van der Sande G. A poor man’s coherent Ising machine based on opto-electronic feedback systems for solving optimization problems. Nat Commun 2019;10(3538):1–9.
|
[36] |
Shen Y, Harris NC, Skirlo S, Prabhu M, Baehr-Jones T, Hochberg M, et al. Deep learning with coherent nanophotonic circuits. Nat Photonics 2017;11 (7):441–6.
|
[37] |
Miscuglio M, Hu Z, Li S, George JK, Capanna R, Dalir H, et al. Massively parallel amplitude-only Fourier neural network. Optica 2020;7(12):1812–9.
|
[38] |
Feldmann J, Youngblood N, Karpov M, Gehring H, Li X, Stappers M. Parallel convolutional processing using an integrated photonic tensor core. Nature 2021;589:52–8.
|
[39] |
Reck M, Zeilinger A, Bernstein HJ, Bertani P. Experimental realization of any discrete unitary operator. Phys Rev Lett 1994;73(1):58–61.
|
[40] |
Carolan J, Harrold C, Sparrow C, Martín-López E, Russell NJ, Silverstone JW, et al. Universal linear optics. Science 2015;349(6249):711–6.
|
[41] |
Clements WR, Humphreys PC, Metcalf BJ, Kolthammer WS, Walmsley IA. Optimal design for universal multiport interferometers. Optica 2016;3 (12):1460–5.
|
[42] |
Fang MY-S, Manipatruni S, Wierzynski C, Khosrowshahi A, DeWeese MR. Design of optical neural networks with component imprecisions. Opt Express 2019;27(10):14009–29.
|
[43] |
Miller DAB. Perfect optics with imperfect components. Optica 2015;2 (8):747–50.
|
[44] |
Moughames J, Porte X, Thiel M, Ulliac G, Larger L, Jacquot M, et al. Threedimensional waveguide interconnects for scalable integration of photonic neural networks. Optica 2020;7(6):640–6.
|
[45] |
Dinc NU, Psaltis D, Brunner D. Optical neural networks: the 3D connection. Photoniques 2020;104:34–8.
|
[46] |
Zhang H, Gu M, Jiang XD, Thompson J, Cai H, Paesani S, et al. An optical neural chip for implementing complex-valued neural network. Nat Commun 2021;12(457):1–11.
|
[47] |
Zhang T, Wang J, Dan Y, Lanqiu Y, Dai J, Han X, et al. Efficient training and design of photonic neural network through neuroevolution. Opt Express 2019;27(26):37150–63.
|
[48] |
Hughes TW, Minkov M, Shi Y, Fan S. Training of photonic neural networks through in situ backpropagation and gradient measurement. Optica 2018;5 (7):864–71.
|
[49] |
Harris NC, Carolan J, Bunandar D, Prabhu M, Hochberg M, Baehr-Jones T, et al. Linear programmable nanophotonic processors. Optica 2018;5(12):1623–31.
|
[50] |
Bogaerts W, Pérez D, Capmany J, Miller DAB, Poon J, Englund D, et al. Programmable photonic circuits. Nature 2020;586(7828):207–16.
|
[51] |
Lin X, Rivenson Y, Yardimci NT, Veli M, Luo Y, Jarrahi M, et al. All-optical machine learning using diffractive deep neural networks. Science 2018;361 (6406):1004–8.
|
[52] |
Kulce O, Mengu D, Rivenson Y, Ozcan A. All-optical information-processing capacity of diffractive surfaces. Light Sci Appl 2021;10(1):1–17.
|
[53] |
Lu L, Zhu L, Zhang Q, Zhu B, Yao Q, Yu M, et al. Miniaturized diffraction grating design and processing for deep neural network. IEEE Photonics Technol Lett 2019;31(24):1952–5.
|
[54] |
Luo Y, Mengu D, Yardimci NT, Rivenson Y, Veli M, Jarrahi M, et al. Design of task-specific optical systems using broadband diffractive neural networks. Light Sci Appl 2019;8(112):1–14.
|
[55] |
Li J, Mengu D, Luo Y, Rivenson Y, Ozcan A. Class-specific differential detection in diffractive optical neural networks improves inference accuracy. Adv Photonics 2019;1(4):46001.
|
[56] |
Zhou T, Fang L, Yan T, Wu J, Li Y, Fan J, et al. In situ optical backpropagation training of diffractive optical neural networks. Photonics Res 2020;8 (6):940–53.
|
[57] |
Rahman MSS, Li J, Mengu D, Rivenson Y, Ozcan A. Ensemble learning of diffractive optical networks. Light Sci Appl 2021;10(14):1–13.
|
[58] |
Mengu D, Luo Y, Rivenson Y, Ozcan A. Analysis of diffractive optical neural networks and their integration with electronic neural networks. IEEE J Sel Top Quantum Electron 2019;26(1):1–14.
|
[59] |
Dou H, Deng Y, Yan T, Wu H, Lin X, Dai Q. Residual D2NN: training diffractive deep neural networks via learnable light shortcuts. Opt Lett 2020;45 (10):2688–91.
|
[60] |
Yan T, Wu J, Zhou T, Xie H, Xu F, Fan J, et al. Fourier-space diffractive deep neural network. Phys Rev Lett 2019;123(2):023901.
|
[61] |
Mengu D, Rivenson Y, Ozcan A. Scale-, shift-, and rotation-invariant diffractive optical networks. ACS Photonics 2021;8(1):324–34.
|
[62] |
Idehenre IU, Mills MS. Multi-directional beam steering using diffractive neural networks. Opt Express 2020;28(18):25915–34.
|
[63] |
Gao Y, Jiao S, Fang J, Lei T, Xie Z, Yuan X. Multiple-image encryption and hiding with an optical diffractive neural network. Opt Commun 2020;463:125476.
|
[64] |
Qian C, Lin X, Lin X, Xu J, Sun Y, Li E, et al. Performing optical logic operations by a diffractive neural network. Light Sci Appl 2020;9(59):1–7.
|
[65] |
Veli M, Mengu D, Yardimci NT, Luo Y, Li J, Rivenson Y, et al. Terahertz pulse shaping using diffractive surfaces. Nat Commun 2021;12(37):1–13.
|
[66] |
Zhao Q, Hao S, Wang Y, Wang L, Xu C. Orbital angular momentum detection based on diffractive deep neural network. Opt Commun 2019;443:245–9.
|
[67] |
Fontaine NK, Ryf R, Chen H, Neilson DT, Kim K, Carpenter J. Laguerre-Gaussian mode sorter. Nat Commun 1865;2019(10):1–7.
|
[68] |
Huang Z, Wang P, Liu J, Xiong W, He Y, Xiao J, et al. All-optical signal processing of vortex beams with diffractive deep neural networks. Phys Rev Appl 2021;15(1):014037.
|
[69] |
Zuo Y, Li B, Zhao Y, Jiang Y, Chen Y-C, Chen P, et al. All-optical neural network with nonlinear activation functions. Optica 2019;6(9):1132–7.
|
[70] |
Jiao S, Feng J, Gao Y, Lei T, Xie Z, Yuan X. Optical machine learning with incoherent light and a single-pixel detector. Opt Lett 2019;44(21):5186–9.
|
[71] |
Limbacher B, Schöenhuber S, Wenclawiak M, Kainz MA, Andrews AM, Strasser G, et al. Terahertz optical machine learning for object recognition. APL Photonics 2020;5(12):126103.
|
[72] |
Zuo Y, Zhao Y, Chen Y-C, Du S, Liu J. Scalability of all-optical neural networks based on spatial light modulators. 2021. arXiv:2102.09722.
|
[73] |
Tamir DE, Shaked NT, Wilson PJ, Dolev S. High-speed and low-power electrooptical DSP coprocessor. J Soc Am A 2009;26(8):A11–20.
|
[74] |
Caulfield HJ, Dolev S. Why future supercomputing requires optics. Nat Photonics 2010;4(5):261–3.
|
[75] |
Tait AN, De Lima TF, Zhou E, Wu AX, Nahmias MA, Shastri BJ, et al. Neuromorphic photonic networks using silicon photonic weight banks. Sci Rep 2017;7(7430):1–10.
|
[76] |
Tait AN, De Lima TF, Nahmias MA, Shastri BJ, Prucnal PR. Multi-channel control for microring weight banks. Opt Express 2016;24(8):8895–906.
|
[77] |
Tait AN, Nahmias MA, Shastri BJ, Prucnal PR. Broadcast and weight: an integrated network for scalable photonic spike processing. J Light Technol 2014;32(21):4029–41.
|
[78] |
Tait AN, Jayatilleka H, De Lima TF, Ma PY, Nahmias MA, Shastri BJ, et al. Feedback control for microring weight banks. Opt Express 2018;26 (20):26422–43.
|
[79] |
Mehrabian A, Al-Kabani Y, Sorger VJ, El-Ghazawi T. PCNNA: a photonic convolutional neural network accelerator. In: IEEE International System-onChip Conference; 2018 Sept 4–7; Arlington, VA, USA. p. 169–73.
|
[80] |
Huang C, Bilodeau S, De Lima TF, Tait AN, Ma PY, Blow EC, et al. Demonstration of scalable microring weight bank control for large-scale photonic integrated circuits. APL Photonics 2020;5(4):040803.
|
[81] |
Ma PY, Tait AN, De Lima TF, Abbaslou S, Shastri BJ, Prucnal PR. Photonic principal component analysis using an on-chip microring weight bank. Opt Express 2019;27(13):18329–42.
|
[82] |
Xu X, Tan M, Corcoran B, Wu J, Boes A, Nguyen TG, et al. 11 Tops photonic convolutional accelerator for optical neural networks. Nature 2021;589:44–51.
|
[83] |
Khoram E, Chen A, Liu D, Ying L, Wang Q, Yuan M, et al. Nanophotonic media for artificial neural inference. Photonics Res 2019;7(8):823–7.
|
[84] |
Wu Z, Zhou M, Khoram E, Liu B, Yu Z. Neuromorphic metasurface. Photonics Res 2020;8(1):46–50.
|
[85] |
Hamerly R, Bernstein L, Sludds A, Soljacˇic´ M, Englund D. Large-scale optical neural networks based on photoelectric multiplication. Phys Rev X 2019;9 (2):21032.
|
[86] |
Cohen E, Malka D, Shemer A, Shahmoon A, Zalevsky Z, London M. Neural networks within multi-core optic fibers. Sci Rep 2016;6(29080):1–14.
|
[87] |
Shabairou N, Cohen E, Wagner O, Malka D, Zalevsky Z. Color image identification and reconstruction using artificial neural networks on multimode fiber images: towards an all-optical design. Opt Lett 2018;43 (22):5603–6.
|
[88] |
Chang J, Sitzmann V, Dun X, Heidrich W, Wetzstein G. Hybrid opticalelectronic convolutional neural networks with optimized diffractive optics for image classification. Sci Re 2018;8(12324):1–10.
|
[89] |
Pad P, Narduzzi S, Kundig C, Turetken E, Bigdeli SA, Dunbar LA. Efficient neural vision systems based on convolutional image acquisition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020 Jun 13–19; Seattle, WA, USA. p. 12285–94.
|
[90] |
Colburn S, Chu Y, Shilzerman E, Majumdar A. Optical frontend for a convolutional neural network. Appl Opt 2019;58(12):3179–86.
|
[91] |
Ahmed M, Al-Hadeethi Y, Bakry A, Dalir H, Sorger VJ. Integrated photonic FFT for optical convolutions towards efficient and high-speed neural networks. 2020. arXiv:2002.01308.
|
[92] |
Xu S, Wang J, Wang R, Chen J, Zou W. High-accuracy optical convolution unit architecture for convolutional neural networks by cascaded acousto-optical modulator arrays. Opt Express 2020;28(15):21854.
|
[93] |
Xu S, Wang J, Zou W. Optical patching scheme for optical convolutional neural networks based on wavelength-division multiplexing and optical delay lines. Opt Lett 2020;45(13):3689–92.
|
[94] |
Miscuglio M, Mehrabian A, Hu Z, Azzam SI, George JK, Kildishev AV, et al. Alloptical nonlinear activation function for photonic neural networks. Opt Mater Express 2018;8(12):3851–63.
|
[95] |
George JK, Mehrabian A, Amin R, Meng J, De Lima TF, Tait AN, et al. Neuromorphic photonics with electro-absorption modulators. Opt Express 2019;27(4):5181–91.
|
[96] |
Fard MMP, Williamson IAD, Edwards M, Liu K, Pai S, Bartlett B, et al. Experimental realization of arbitrary activation functions for optical neural networks. Opt Express 2020;28(8):12138–48.
|
[97] |
Brunner D, Fischer I. Reconfigurable semiconductor laser networks based on diffractive coupling. Opt lett 2015;40(16):3854–7.
|
[98] |
Maktoobi S, Froehly L, Andreoli L, Porte X, Jacquot M, Larger L, et al. Diffractive coupling for photonic networks: how big can we go? IEEE J Sel Top Quant 2020;26(1):1–8.
|
[99] |
Appeltant L, Soriano MC, Van der Sande G, Danckaert J, Massar S, Dambre J, et al. Information processing using a single dynamical node as complex system. Nat Commun 2011;2(468):1–6.
|
[100] |
Heuser T, Pflüger M, Fischer I, Lott JA, Brunner D, Reitzenstein S. Developing a photonic hardware platform for brain-inspired computing based on 5×5 VCSEL arrays. J Phys Photonics 2020;2(4):044002.
|
[101] |
Paquot Y, Dambre J, Schrauwen B, Haelterman M, Massar S. Reservoir computing: a photonic neural network for information processing, In: Eggleton BJ, Gaeta AL, Broderick NGR, editors. Nonlinear Optics and Applications IV; 2010 Jun 4; Brussels, Belgium: SPIE; 2010(7728).
|
[102] |
Brunner D, Soriano MC, Mirasso CR, Fischer I. Parallel photonic information processing at gigabyte per second data rates using transient states. Nat Commun 2013;4(1364):1–7.
|
[103] |
Duport F, Schneider B, Smerieri A, Haelterman M, Massar S. All-optical reservoir computing. Opt Express 2012;20(20):22783–95.
|
[104] |
Vinckier Q, Duport F, Smerieri A, Vandoorne K, Bienstman P, Haelterman M, et al. High-performance photonic reservoir computer based on a coherently driven passive cavity. Optica 2015;2(5):438–46.
|
[105] |
Hicke K, Escalona-Morán MA, Brunner D, Soriano MC, Fischer I, Mirasso CR. Information processing using transient dynamics of semiconductor lasers subject to delayed feedback. IEEE J Sel Top Quant 2013;19 (4):1501610.
|
[106] |
Nakayama J, Kanno K, Uchida A. Laser dynamical reservoir computing with consistency: an approach of a chaos mask signal. Opt Express 2016;24 (8):8679–92.
|
[107] |
Nguimdo RM, Verschaffelt G, Danckaert J, Van der Sande G. Fast photonic information processing using semiconductor lasers with delayed optical feedback: role of phase dynamics. Opt Express 2014;22(7):8672–86.
|
[108] |
Nguimdo RM, Verschaffelt G, Danckaert J, Van der Sande G. Simultaneous computation of two independent tasks using reservoir computing based on a single photonic nonlinear node with optical feedback. IEEE Trans Neural Netw Learn Syst 2015;26(12):3301–7.
|
[109] |
Nguimdo RM, Verschaffelt G, Danckaert J, Van der Sande G. Reducing the phase sensitivity of laser-based optical reservoir computing systems. Opt Express 2016;24(2):1238–52.
|
[110] |
Dejonckheere A, Duport F, Smerieri A, Fang L, Oudar J-L, Haelterman M, et al. All-optical reservoir computer based on saturation of absorption. Opt Express 2014;22(9):10868–81.
|
[111] |
Larger L, Soriano MC, Brunner D, Appeltant L, Gutierrez M, Pesquera L, et al. Photonic information processing beyond turning: an optoelectronic implementation of reservoir computing. Opt Express 2012;20(3):3241–9.
|
[112] |
Paquot Y, Duport F, Smerieri A, Dambre J, Schrauwen B, Haelterman M, et al. Optoelectronic reservoir computing. Sci Rep 2012;2(287):1–6.
|
[113] |
Martinenghi R, Rybalko S, Jacquot M, Chembo YK, Larger L. Photonic nonlinear transient computing with multiple-delay wavelength dynamics. Phys Rev Lett 2012;108(24):244101.
|
[114] |
Soriano MC, Ortín S, Brunner D, Larger L, Mirasso CR, Fischer I, et al. Optoelectronic reservoir computing: tackling noise-induced performance degradation. Opt Express 2013;21(1):12–20.
|
[115] |
Ortín S, Soriano MC, Pesquera L, Brunner D, San-Marín D, Fischer CR, et al. A unified framework for reservoir computing and extreme learning machines based on a single time-delayed neuron. Sci Rep 2015;5(14945):1–11.
|
[116] |
Duport F, Smerieri A, Akrout A, Haelterman M, Massar S. Fully analogue photonic reservoir computer. Sci Rep 2016;6(22381):1–12.
|
[117] |
Duport F, Smerieri A, Akrout A, Haelterman M, Massar S. Virtualization of a photonic reservoir computer. J Lightwave Technol 2016;34(9):2085–91.
|
[118] |
Lavrov R, Jacquot M, Larger L. Nonlocal nonlinear electrooptic phase dynamics demonstrating 10 Gb/s chaos communications. IEEE J Quantum Elect 2010;46(10):1430–5.
|
[119] |
Vandoorne K, Dierckx W, Schrauwen B, Verstraeten D, Baets R, Bienstman P, et al. Toward optical signal processing using photonic reservoir computing. Opt Express 2008;16(15):11182–92.
|
[120] |
Vandoorne K, Dambre J, Verstraeten D, Schrauwen B, Bienstman P. Parallel reservoir computing using optical amplifiers. IEEE Trans Neural Netw 2011;22(9):1469–81.
|
[121] |
Salehi MR, Dehyadegari L. Optical signal processing using photonic reservoir computing. J Mod Opt 2014;61(17):1442–51.
|
[122] |
Vandoorne K, Mechet P, Van Vaerenbergh T, Fiers M, Morthier G, Verstraeten D, et al. Experimental demonstration of reservoir computing on a silicon photonics chip. Nat Commun 2014;5(3541):1–6.
|
[123] |
Ikeda K, Daido H, Akimoto O. Optical turbulence: chaotic behavior of transmitted light from a ring cavity. Phys Rev Lett 1980;45(9):709–12.
|
[124] |
Goedgebuer J-P, Larger L, Porte H, Delorme F. Chaos in wavelength with a feedback tunable laser diode. Phys Rev E 1998;57(3):2795–8.
|
[125] |
Antonik P, Duport F, Hermans M, Smerieri A, Haelterman M, Massar S. Online training of an opto-electronic reservoir computer applied to real-time channel equalization. IEEE Trans Neural Netw Learn Syst 2016;28(11):2686–98.
|
[126] |
Antonik P, Haelterman M, Massar S. Brain-inspired photonic signal processor for generating periodic patterns and emulating chaotic systems. Phys Rev Appl 2017;7(5):054014.
|
[127] |
Larger L, Baylón-Fuentes A, Martinenghi R, Udaltsov VS, Chembo YK, Jacquot M. High-speed photonic reservoir computing using a time-delay-based architecture: million words per second classification. Phys Rev X 2017;7 (1):011015.
|
[128] |
Hou Y, Xia G, Yang W, Wang D, Jayaprasath E, Jiang Z, et al. Prediction performance of reservoir computing system based on a semiconductor laser subject to double optical feedback and optical injection. Opt Express 2018;26 (8):10211–9.
|
[129] |
Barbay S, Kuszelewicz R, Yacomotti AM. Excitability in a semiconductor laser with saturable absorber. Opt Lett 2011;36(23):4476–8.
|
[130] |
Hurtado A, Schires K, Henning ID, Adams MJ. Investigation of vertical cavity surface emitting laser dynamics for neuromorphic photonic systems. Appl Phys Lett 2012;100(10):103703.
|
[131] |
Nahmias MA, Tait AN, Shastri BJ, De Lima TF, Prucnal PR. Excitable laser processing network node in hybrid silicon: analysis and simulation. Opt Express 2015;23(20):26800–13.
|
[132] |
Shastri BJ, Nahmias MA, Tait AN, Rodriguez AW, Wu B, Prucnal PR. Spike processing with a graphene excitable laser. Sci Rep 2016;6(19126):1–12.
|
[133] |
Coomans W, Gelens L, Beri S, Danckaert J, Van der Sande G. Solitary and coupled semiconductor ring lasers as optical spiking neurons. Phys Rev E Stat Nonlin Soft Matter Phys 2011;84:036209.
|
[134] |
Boahen K. A neuromorph’s prospectus. Comput Sci Eng 2017;19(2):14–28.
|
[135] |
Vaerenbergh TV, Fiers M, Mechet P, Spuesens T, Kumar R, Morthier G, et al. Cascadable excitability in microrings. Opt Express 2012;20(18):20292–308.
|
[136] |
Selmi F, Braive R, Beaudoin G, Sagnes I, Kuszelewicz R, Barbay S. Relative refractory period in an excitable semiconductor laser. Phys Rev Lett 2014;112 (18):183902.
|
[137] |
Bueno J, Maktoobi S, Froehly L, Fischer I, Jacquot M, Larger L, et al. Reinforcement learning in a large-scale photonic recurrent neural network. Optica 2018;5(6):756–60.
|
[138] |
Davidson NS, Richards RW, Geissler E. Scaling laws and polystyrene networks: a quasi-elastic light scattering study. Polymer 1985;26 (11):1643–6.
|
[139] |
Dong J, Rafayelyan M, Krzakala F, Gigan S. Optical reservoir computing using multiple light scattering for chaotic systems prediction. IEEE J Sel Top Quant 2020;26(1):1–12.
|
[140] |
Rafayelyan M, Dong J, Tan Y, Krzakala F, Gigan S. Large-scale optical reservoir computing for spatiotemporal chaotic systemsprediction.2020. arXiv:2001.09131.
|
[141] |
Bao X. Research progress in optoelectronic reservoir computing system. Laser Optoelectron Prog 2015;3:5.
|
[142] |
Zhao Q, Yin H. Research progress of reservoir computing using chaotic laser. Laser Optoelectron Prog 2013;50(3):030003.
|
[143] |
Zhang H, Feng X, Li B, Wang Y, Cui K, Liu F, et al. Integrated photonic reservoir computing based on hierarchical time-multiplexing structure. Opt Express 2014;22(25):31356–70.
|
[144] |
Maass W. Networks of spiking neurons: the third generation of neural network models. Neural Networks 1997;10(9):1659–71.
|
[145] |
Peng H-T, Nahmias MA, De Lima TF, Tait AN, Shastri BJ. Neuromorphic photonic integrated circuits. IEEE J Sel Top Quantum Electron 2018;24(6):1–15.
|
[146] |
Bohte SM, Kok JN, La Poutre H. Error-backpropagation in temporally encoded networks of spiking neurons. Neurocomputing 2002;48(1–4):17–37.
|
[147] |
Gütig R, Sompolinsky H. The tempotron: a neuron that learns spike timing– based decisions. Nat Neurosci 2006;9(3):420–8.
|
[148] |
Song S, Miller KD, Abbott LF. Competitive Hebbian learning through spiketiming-dependent synaptic plasticity. Nat Neurosci 2000;3(9):919–26.
|
[149] |
Ponulak F, Kasin´ ski A. Supervised learning in spiking neural networks with ReSuMe: sequence learning, classification, and spike shifting. Neural Comput 2010;22(2):467–510.
|
[150] |
Mohemmed A, Schliebs S, Matsuda S, Kasabov N. Span: spike pattern association neuron for learning spatio-temporal spike patterns. Int J Neural Syst 2012;22(04):1250012.
|
[151] |
Yu Q, Tang H, Tan KC, Li H. Precise-spike-driven synaptic plasticity: learning hetero-association of spatiotemporal spike patterns. PLoS ONE 2013;8(11): e78318.
|
[152] |
Xiang S, Ren Z, Song Z, Zhang Y, Guo X, Han G, et al. Computing primitive of fully-VCSELs-based all-optical spiking neural network for supervised learning and pattern classification. IEEE Trans Neural Netw Learn Syst 2020;32 (6):2494–505.
|
[153] |
Xiang S, Zhang Y, Gong J, Guo X, Lin L, Hao Y. STDP-based unsupervised spike pattern learning in a photonic spiking neural network with VCSELs and VCSOAs. IEEE J Sel Top Quant 2019;25(6):1700109.
|
[154] |
Merolla PA, Arthur JV, Alvarez-Icaza R, Cassidy AS, Sawada J, Akopyan F, et al. A million spiking-neuron integrated circuit with a scalable communication network and interface. Science 2014;345(6197):668–73.
|
[155] |
Benjamin BV, Gao P, McQuinn E, Choudhary S, Chandrasekaran AR, Bussat JM, et al. Neurogrid: a mixed-analog-digital multichip system for large-scale neural simulations. P IEEE 2014;102(5):699–716.
|
[156] |
Furber SB, Galluppi F, Temple S, Plana LA. The spinnaker project. P IEEE 2014;102(5):652–65.
|
[157] |
Prucnal PR, Shastri BJ, Teich MC. Neuromorphic photonics. 1st ed. Boca Raton: CRC Press; 2017.
|
[158] |
De Marinis L, Cococcioni M, Castoldi P, Andriolli N. Photonic neural petworks: a survey. IEEE Access 2019;7:175827–41.
|
[159] |
Shastri BJ, Tait AN, De Lima TF, Pernice WHP, Bhaskaran H, Wright CD, et al. Photonics for artificial intelligence and neuromorphic computing. Nat Photonics 2021;15:102–14.
|
/
〈 | 〉 |