Modification of NASICON Electrolyte and Its Application in Real Na-Ion Cells
Received date: 06 May 2020
Published date: 24 Jan 2022
The low ionic conductivity of solid-state electrolytes (SSEs) and the inferior interfacial reliability between SSEs and solid-state electrodes are two urgent challenges hindering the application of solid-state sodium batteries (SSSBs). Herein, sodium (Na) super ionic conductor (NASICON)-type SSEs with a nominal composition of Na3+2xZr2–xMgxSi2PO12 were synthesized using a facile two-step solid-state method, among which Na3.3Zr1.85Mg0.15Si2PO12 (x = 0.15, NZSP-Mg0.15) showed the highest ionic conductivity of 3.54 mS∙cm–1 at 25 °C. By means of a thorough investigation, it was verified that the composition of the grain boundary plays a crucial role in determining the total ionic conductivity of NASICON. Furthermore, due to a lack of examination in the literature regarding whether NASICON can provide enough anodic electrochemical stability to enable high-voltage SSSBs, we first adopted a high-voltage Na3(VOPO4)2F (NVOPF) cathode to verify its compatibility with the optimized NZSP-Mg0.15 SSE. By comparing the electrochemical performance of cells with different configurations (low-voltage cathode vs high-voltage cathode, liquid electrolytes vs SSEs), along with an X-ray photoelectron spectroscopy (XPS) evaluation of the after-cycled NZSP-Mg0.15, it was demonstrated that the NASICON SSEs are not stable enough under high voltage, suggesting the importance of investigating the interface between the NASICON SSEs and high-voltage cathodes. Furthermore, by coating NZSP-Mg0.15 NASICON powder onto a polyethylene (PE) separator (PE@NASICON), a 2.42 A∙h non-aqueous Na-ion cell of carbon|PE@NASICON|NaNi2/9Cu1/9Fe1/3Mn1/3O2 was found to deliver an excellent cycling performance with an 88% capacity retention after 2000 cycles, thereby demonstrating the high reliability of a separator coated with NASICON-type SSEs.
Key words: Solid-state electrolytes; Solid-state sodium batteries; NASICON; Interface; Separator; Coating
Qiangqiang Zhang , Quan Zhou , Yaxiang Lu , Yuanjun Shao , Yuruo Qi , Xingguo Qi , Guiming Zhong , Yong Yang , Liquan Chen , Yong-Sheng Hu . Modification of NASICON Electrolyte and Its Application in Real Na-Ion Cells[J]. Engineering, 2022 , 8(1) : 170 -180 . DOI: 10.1016/j.eng.2021.04.028
[1] |
Zhao S, Qin B, Chan KY, Li CY, Li F. Recent development of aprotic Na–O2 batteries. Batter Supercaps 2019;2(9):725–42.
|
[2] |
Lang J, Li J, Zhang F, Ding X, Zapien JA, Tang Y. Sodium-ion hybrid battery combining an anion-intercalation cathode with an adsorption-type anode for enhanced rate and cycling performance. Batter Supercaps 2019;2(5):440–7.
|
[3] |
Zhao C, Lu Y, Chen L, Hu YS. Flexible Na batteries. InfoMat 2020;2(1):126–38.
|
[4] |
Lin Z, Xia Q, Wang W, Li W, Chou S. Recent research progresses in ether- and ester-based electrolytes for sodium-ion batteries. InfoMat 2019;1(3):376–89.
|
[5] |
Hu YS, Lu Y. 2019 Nobel Prize for the Li-ion batteries and new opportunities and challenges in Na-ion batteries. ACS Energy Lett 2019;4(11):2689–90.
|
[6] |
Li Y, Yang Y, Lu Y, Zhou Q, Qi X, Meng Q, et al. Ultralow-concentration electrolyte for Na-ion batteries. ACS Energy Lett 2020;5(4):1156–8.
|
[7] |
Eshetu GG, Elia GA, Armand M, Forsyth M, Komaba S, Rojo T, et al. Electrolytes and interphases in sodium-based rechargeable batteries: recent advances and perspectives. Adv Energy Mater 2020;10(20):2000093.
|
[8] |
Hu Pu, Wang X, Ma J, Zhang Z, He J, Wang X, et al. NaV3(PO4)3/C nanocomposite as novel anode material for Na-ion batteries with high stability. Nano Energy 2016;26:382–91.
|
[9] |
Hu P, Wang X, Wang T, Chen L, Ma J, Kong Q, et al. Boron substituted Na3V2(P1xBxO4)3 cathode materials with enhanced performance for sodiumion batteries. Adv Sci 2016;3(12):1600112. Correction in: Adv Sci 2017;4(2).
|
[10] |
Wang Y, Song S, Xu C, Hu N, Molenda J, Lu Li. Development of solid-state electrolytes for sodium-ion battery—a short review. Nano Mater Sci 2019;1 (2):91–100.
|
[11] |
Huang Y, Zhao L, Li L, Xie M, Wu F, Chen R. Electrolytes and electrolyte/electrode interfaces in sodium-ion batteries: from scientific research to practical application. Adv Mater 2019;31(21):1808393.
|
[12] |
Liu L, Qi X, Yin S, Zhang Q, Liu X, Suo L, et al. In situ formation of a stable interface in solid-state batteries. ACS Energy Lett 2019;4(7):1650–7.
|
[13] |
Qiao L, Judez X, Rojo T, Armand M, Zhang H. Review—polymer electrolytes for sodium batteries. J Electrochem Soc 2020;167(7):070534.
|
[14] |
Zhou C, Bag S, Thangadurai V. Engineering materials for progressive all-solidstate Na batteries. ACS Energy Lett 2018;3(9):2181–98.
|
[15] |
Zhao C, Liu L, Qi X, Lu Y, Wu F, Zhao J, et al. Solid-state sodium batteries. Adv Energy Mater 2018;8(17):1703012.
|
[16] |
Lu Y, Li L, Zhang Q, Niu Z, Chen J. Electrolyte and interface engineering for solid-state sodium batteries. Joule 2018;2(9):1747–70.
|
[17] |
Hou W, Guo X, Shen X, Amine K, Yu H, Lu J. Solid electrolytes and interfaces in all-solid-state sodium batteries: progress and perspective. Nano Energy 2018;52:279–91.
|
[18] |
Zhang XQ, Zhao CZ, Huang JQ, Zhang Q. Recent advances in energy chemical engineering of next-generation lithium batteries. Engineering 2018;4 (6):831–47.
|
[19] |
Goodenough JB, Hong HYP, Kafalas JA. Fast Na+ -ion transport in skeleton structures. Mater Res Bull 1976;11(2):203–20.
|
[20] |
Hong HYP. Crystal structures and crystal chemistry in the system Na1+xZr2SixP3xO12. Mater Res Bull 1976;11(2):173–82.
|
[21] |
Zhang Z, Shao Y, Lotsch B, Hu YS, Li H, Janek J, et al. New horizons for inorganic solid state ion conductors. Energy Environ Sci 2018;11(8):1945–76.
|
[22] |
Jalalian-Khakshour A, Phillips CO, Jackson L, Dunlop TO, Margadonna S, Deganello D. Solid-state synthesis of NASICON (Na3Zr2Si2PO12) using nanoparticle precursors for optimisation of ionic conductivity. J Mater Sci 2020;55(6):2291–302.
|
[23] |
Shao Y, Zhong G, Lu Y, Liu L, Zhao C, Zhang Q, et al. A novel NASICON-based glass–ceramic composite electrolyte with enhanced Na-ion conductivity. Energy Storage Mater 2019;23:514–21.
|
[24] |
Lan T, Tsai CL, Tietz F, Wei XK, Heggen M, Dunin-Borkowski RE, et al. Roomtemperature all-solid-state sodium batteries with robust ceramic interface between rigid electrolyte and electrode materials. Nano Energy 2019;65:104040.
|
[25] |
Lee JS, Chang CM, Lee YIL, Lee JH, Hong SH. Spark plasma sintering (SPS) of NASICON ceramics. J Am Ceram Soc 2004;87(2):305–7.
|
[26] |
Zhang Z, Zhang Q, Shi J, Chu YS, Yu X, Xu K, et al. A self-forming composite electrolyte for solid-state sodium battery with ultralong cycle life. Adv Energy Mater 2017;7(4):1601196.
|
[27] |
Noi K, Suzuki K, Tanibata N, Hayashi A, Tatsumisago M. Liquid-phase sintering of highly Na+ ion conducting Na3Zr2Si2PO12 ceramics using Na3BO3 additive. J Am Ceram Soc 2018;101(3):1255–65.
|
[28] |
Yang J, Wan HL, Zhang ZH, Liu GZ, Xu XX, Hu YS, et al. NASICON-structured Na3.1Zr1.95Mg0.05Si2PO12 solid electrolyte for solid-state sodium batteries. Rare Met 2018;37(6):480–7.
|
[29] |
Samiee M, Radhakrishnan B, Rice Z, Deng Z, Meng YS, Ong SP, et al. Divalentdoped Na3Zr2Si2PO12 natrium superionic conductor: improving the ionic conductivity via simultaneously optimizing the phase and chemistry of the primary and secondary phases. J Power Sources 2017;347:229–37.
|
[30] |
Hu YS. Batteries: getting solid. Nat Energy 2016;1(4):16042.
|
[31] |
Song S, Duong HM, Korsunsky AM, Hu N, Lu L. A Na+ superionic conductor for room-temperature sodium batteries. Sci Rep 2016;6(1):32330.
|
[32] |
Yu X, Manthiram A. Sodium–sulfur batteries with a polymer-coated NASICONtype sodium-ion solid electrolyte. Matter 2019;1(2):439–51.
|
[33] |
Zhou W, Li Y, Xin S, Goodenough JB. Rechargeable sodium all-solid-state battery. ACS Cent Sci 2017;3(1):52–7.
|
[34] |
Fu H, Yin Q, Huang Y, Sun H, Chen Y, Zhang R, et al. Reducing interfacial resistance by Na–SiO2 composite anode for NASICON-based solid-state sodium battery. ACS Mater Lett 2020;2(2):127–32.
|
[35] |
Lu Y, Alonso JA, Yi Q, Lu L, Wang ZL, Sun C. A high-performance monolithic solid-state sodium battery with Ca2+ doped Na3Zr2Si2PO12 electrolyte. Adv Energy Mater 2019;9(28):1901205.
|
[36] |
Matios E, Wang H, Wang C, Hu X, Lu X, Luo J, et al. Graphene regulated ceramic electrolyte for solid-state sodium metal battery with superior electrochemical stability. ACS Appl Mater Interfaces 2019;11(5):5064–72.
|
[37] |
Miao X, Di H, Ge X, Zhao D, Wang P, Wang R, et al. AlF3-modified anodeelectrolyte interface for effective Na dendrites restriction in NASICON-based solid-state electrolyte. Energy Storage Mater 2020;30:170–8.
|
[38] |
Uchida Y, Hasegawa G, Shima K, Inada M, Enomoto N, Akamatsu H, et al. Insights into sodium ion transfer at the Na/NASICON interface improved by uniaxial compression. ACS Appl Energy Mater 2019;2(4):2913–20.
|
[39] |
Noguchi Y, Kobayashi E, Plashnitsa LS, Okada S, Yamaki JI. Fabrication and performances of all solid-state symmetric sodium battery based on NASICONrelated compounds. Electrochim Acta 2013;101:59–65.
|
[40] |
Lalère F, Leriche JB, Courty M, Boulineau S, Viallet V, Masquelier C, et al. An allsolid state NASICON sodium battery operating at 200 C. J Power Sources 2014;247:975–80.
|
[41] |
Ruan Y, Guo F, Liu J, Song S, Jiang N, Cheng B. Optimization of Na3Zr2Si2PO12 ceramic electrolyte and interface for high performance solid-state sodium battery. Ceram Int 2019;45(2):1770–6.
|
[42] |
Gao H, Xue L, Xin S, Park K, Goodenough JB. A plastic-crystal electrolyte interphase for all-solid-state sodium batteries. Angew Chem Int Ed Engl 2017;56(20):5541–5.
|
[43] |
Gao H, Xin S, Xue L, Goodenough JB. Stabilizing a high-energy-density rechargeable sodium battery with a solid electrolyte. Chem 2018;4(4): 833–44.
|
[44] |
Kehne P, Guhl C, Ma Q, Tietz F, Alff L, Hausbrand R, et al. Electrochemical performance of all-solid-state sodium-ion model cells with crystalline NaxCoO2 thin-film cathodes. J Electrochem Soc 2019;166(3):A5328–32.
|
[45] |
Kehne P, Guhl C, Ma Q, Tietz F, Alff L, Hausbrand R, et al. Sc-substituted Nasicon solid electrolyte for an all-solid-state NaxCoO2/Nasicon/Na sodium model battery with stable electrochemical performance. J Power Sources 2019;409:86–93.
|
[46] |
Zhan C, Wu T, Lu J, Amine K. Dissolution, migration, and deposition of transition metal ions in Li-ion batteries exemplified by Mn-based cathodes—a critical review. Energy Environ Sci 2018;11(2):243–57.
|
[47] |
Zhang Q, Gu QF, Li Y, Fan HN, Luo WB, Liu HK, et al. Surface stabilization of O3- type layered oxide cathode to protect the anode of sodium ion batteries for superior lifespan. iScience 2019;19:244–54.
|
[48] |
Yan Z, Pan H, Wang J, Chen R, Luo F, Yu X, et al. Suppressing transition metal dissolution and deposition in lithium-ion batteries using oxide solid electrolyte coated polymer separator. Chin Phys B 2020;29(8):088201.
|
[49] |
Qi XG, Zhou Q, Tang K, Hu YS, inventors; HiNa Battery Technology Co., Ltd., assignee. [Ceramic separator and sodium ion secondary battery for sodium ion battery and its application]. Chinese Patent CN109244314A. 2019 Jan 18. Chinese.
|
[50] |
Qi Y, Zhao J, Yang C, Liu H, Hu Y. Comprehensive studies on the hydrothermal strategy for the synthesis of Na3(VO1xPO4)2F1+2x (0 x 1) and their Nastorage performance. Small Methods 2019;3(4):1800111.
|
[51] |
Zhang Q, Lu Y, Yu H, Yang G, Liu Q, Wang Z, et al. PEO-NaPF6 blended polymer electrolyte for solid state sodium battery. J Electrochem Soc 2020;167 (7):070523.
|
[52] |
Tsai CL, Hong HYP. Investigation of phases and stability of solid electrolytes in the NASICON system. Mater Res Bull 1983;18(11):1399–407.
|
[53] |
Takahashi T, Kuwabara K, Shibata M. Solid-state ionics—conductivities of Na+ ion conductors based on NASICON. Solid State Ion 1980;1(3–4):163–75.
|
[54] |
Vonalpen U, Bell M, Hofer H. Compositional dependence of the electrochemical and structural parameters in the Nasicon system (Na1+xSixZr2P3xO12). Solid State Ion 1981;3-4:215–8.
|
[55] |
Fuentes RO, Figueiredo FM, Marques FMB, Franco JI. Processing and electrical properties of NASICON prepared from yttria-doped zirconia precursors. J Eur Ceram Soc 2001;21(6):737–43.
|
[56] |
Fuentes R. Influence of microstructure on the electrical properties of NASICON materials. Solid State Ion 2001;140(1–2):173–9.
|
[57] |
Naqash S, Sebold D, Tietz F, Guillon O. Microstructure–conductivity relationship of Na3Zr2(SiO4)2(PO4) ceramics. J Am Ceram Soc 2019;102 (3):1057–70.
|
[58] |
Guin M, Tietz F, Guillon O. New promising NASICON material as solid electrolyte for sodium-ion batteries: correlation between composition, crystal structure and ionic conductivity of Na3+xSc2SixP3xO12. Solid State Ion 2016;293:18–26.
|
[59] |
Deng Y, Eames C, Nguyen LHB, Pecher O, Griffith KJ, Courty M, et al. Crystal structures, local atomic environments, and ion diffusion mechanisms of scandium-substituted sodium superionic conductor (NASICON). Chem Mater 2018;30(8):2618–30.
|
[60] |
Ben Bechir M, Ben Rhaiem A. The sodium-ion battery: study of alternative current conduction mechanisms on the Na3PO4-based solid electrolyte. Physica E 2020;120:114032.
|
[61] |
Irvine JTS, Sinclair DC, West AR. Electroceramics: characterization by impedance spectroscopy. Adv Mater 1990;2(3):132–8.
|
[62] |
Kim JH, Oh TS, Lee MS, Park JG, Kim YH. Effects of Al2O3 addition on the sinterability and ionic conductivity of nasicon. J Mater Sci 1993;28(6): 1573–7.
|
[63] |
Wang S, Xu H, Li W, Dolocan A, Manthiram A. Interfacial chemistry in solidstate batteries: formation of interphase and its consequences. J Am Chem Soc 2018;140(1):250–7.
|
[64] |
Tang H, Deng Z, Lin Z, Wang Z, Chu IH, Chen C, et al. Probing solid–solid interfacial reactions in all-solid-state sodium-ion batteries with firstprinciples calculations. Chem Mater 2018;30(1):163–73.
|
[65] |
Lacivita V, Wang Y, Bo SH, Ceder G. Ab initio investigation of the stability of electrolyte/electrode interfaces in all-solid-state Na batteries. J Mater Chem A Mater Energy Sustain 2019;7(14):8144–55.
|
/
〈 | 〉 |