The Next Breakthroughs of Artificial Intelligence: The Interdisciplinary Nature of AI
Published date: 24 Jan 2020
Yueting Zhuang , Ming Cai , Xuelong Li , Xiangang Luo , Qiang Yang , Fei Wu . The Next Breakthroughs of Artificial Intelligence: The Interdisciplinary Nature of AI[J]. Engineering, 2020 , 6(3) : 245 -247 . DOI: 10.1016/j.eng.2020.01.009
[1] |
Fluri J, Kacprzak T, Lucchi A, Refregier A, Amara A, Hofmann T, et al. Cosmological constraints with deep learning from KiDS-450 weak lensing maps. 2019. arXiv: 1906.03156.
|
[2] |
Chien S, Wagstaff KL. Robotic space exploration agents. Sci Robo 2017;2(7): eaan4831.
|
[3] |
Anthes G. Lifelong learning in artificial neural networks. Commun ACM 2019;62(6):13–5.
|
[4] |
Goues CL, Pradel M, Roychoudhury A. Automated program repair. Commun ACM 2019;62(12):56–65.
|
[5] |
Esteva A, Robicquet A, Ramsundar B, Kuleshov V, DePristo M, Chou K, et al. A guide to deep learning in healthcare. Nat Med 2019;25(1):24–9.
|
[6] |
Washburn JD, Mejia-Guerra MK, Ramstein G, Kremling KA, Valluru R, Buckler ES, et al. Evolutionarily informed deep learning methods for predicting relative transcript abundance from DNA sequence. Proc Natl Acad Sci 2019;116 (12):5542–9.
|
[7] |
Eraslan G, Avsec Zˇ, Gagneur J, Theis FJ. Deep learning: new computational modelling techniques for genomics. Nat Rev Genet 2019;20(7):389–403.
|
[8] |
Corea F. The convergence of AI and blockchain. In: Corea F, editor. Applied artificial intelligence: where AI can be used in business. Cham: Springer; 2018. p. 1–26.
|
[9] |
Zhou Q, Tang P, Liu S, Pan J, Yan Q, Zhang SC. Learning atoms for materials discovery. Proc Natl Acad Sci 2018;115(28):E6411–7.
|
[10] |
Segler MHS, Preuss M, Waller MP. Planning chemical syntheses with deep neural networks and symbolic AI. Nature 2018;555(7698):604–10.
|
[11] |
Luo X. Subwavelength artificial structures: opening a new era for engineering optics. Adv Mater 2019;31(4):1804680.
|
[12] |
Lin X, Rivenson Y, Yardimci NT, Veli M, Luo Y, Jarrahi M, et al. All-optical machine learning using diffractive deep neural networks. Science 2018;361 (6406):1004–8.
|
[13] |
Yang Q, Liu Y, Chen T, Tong Y. Federated machine learning: concept and applications. ACM Trans Intellt Syst Technol TIST 2019;10(2):12.
|
[14] |
McMahan HB, Moore E, Ramage D, Hampson S, Arcas BAy. Communicationefficient learning of deep networks from decentralized data. 2017. arXiv:1602.05629.
|
[15] |
Liu Y, Chen T, Yang Q. Secure federated transfer learning. 2019. arXiv:1812.03337.
|
[16] |
Bonawitz K, Ivanov V, Kreuter B, Marcedone A, McMahan HB, Patel S, et al. Practical secure aggregation for privacy-preserving machine learning. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security (CCS’17); 2017 Oct 30–Nov 3; Dallas, TX, USA; 2017. p. 1175–91.
|
[17] |
Yang Q, Liu Y, Cheng Y, Kang Y, Chen T, Yu H. Federated learning. Williston, VT, USA: Morgan & Claypool; 2019.
|
[18] |
Pan Y. Heading toward artificial intelligence 2.0. Engineering 2016;2 (4):409–13.
|
[19] |
Pan Y. Special issue on artificial intelligence 2.0. Front Inform Technol Electron Eng 2017;18(1):1–2.
|
[20] |
Pan Y. Special issue on artificial intelligence 2.0: theories and applications. Front Inform Technol Electron Eng 2018;19(1):1–2.
|
[21] |
Zhuang Y, Wu F, Chen C, Pan Y. Challenges and opportunities: from big data to knowledge in AI 2.0. Front Inform Technol Electron Eng 2017;18(1):3–14.
|
/
〈 | 〉 |