Development of Biomedical Elastomer Material Industry in China

Jiajia Xue, Feng Tian, Qingsheng Liu, Anchao Feng, Xuan Qin, Jichuan Zhang, Shikai Hu, Pengbo Wan, Nanying Ning, Ming Tian, Xiuying Zhao, Liqun Zhang

Strategic Study of CAE ›› 2025

PDF(700 KB)
PDF(700 KB)
Strategic Study of CAE ›› 2025 DOI: 10.15302/J-SSCAE-2025.02.008

Development of Biomedical Elastomer Material Industry in China

Author information +
History +

Abstract

As key materials for medical devices and consumables, biomedical elastomer materials play a significant role in improving people's health and quality of life. The biomedical elastomer material industry has broad application prospects, high added values, and rapid growth, and currently faces new situations such as accelerated technological iteration and clinical demand upgrading. Therefore, it is urgent to conduct systematic research on the development of this industry. This study reviews the basic situations, industrial statuses, and development directions of related materials, categorized as follows: biomedical polyurethane elastomers and their medical products, biomedical silicone rubber and their medical products, and other biomedical elastomers (i.e., medical natural rubber, medical thermoplastic vulcanizates, medical thermoplastic elastomers, medical eucommia ulmoides gum elastomers, biodegradable biomedical elastomers, and hydrogel biomedical elastomers) and their medical products. The research indicates that the application range of biomedical elastomer materials in China is rapidly expanding, the market size is continuously growing, and the level of industrial development is steadily improving. However, there remain obvious shortcomings regarding material performance optimization, breakthroughs in key technologies, and construction of industrial standards systems. To this end, it is recommended to develop complex medical products that are widely and urgently needed clinically, promote the innovation and engineering application of raw materials and products, enhance the safety and market competitiveness of raw materials and products, and accelerate technological breakthroughs and industrialization through collaborative innovation, so as to promote the high-quality and sustainable development of the biomedical elastomer material industry in China.

Keywords

biomedical elastomers / raw materials / medical products / industrialization / polyurethane / silicone rubber / material and device performance

Cite this article

Download citation ▾
Jiajia Xue, Feng Tian, Qingsheng Liu, Anchao Feng, Xuan Qin, Jichuan Zhang, Shikai Hu, Pengbo Wan, Nanying Ning, Ming Tian, Xiuying Zhao, Liqun Zhang. Development of Biomedical Elastomer Material Industry in China. Strategic Study of CAE, 2025 https://doi.org/10.15302/J-SSCAE-2025.02.008

References

[1]
Anderson J M. Biological responses to materials [J]. Annual Review of Materials Research, 2001, 31: 81‒110.
[2]
Williams D F. On the mechanisms of biocompatibility [J]. Biomaterials, 2008, 29(20): 2941‒2953.
[3]
徐子钦, 张佳佳, 何俊宽, 等. 生物医用橡胶的研究进展 [J]. 合成橡胶工业, 2015, 38(5): 405‒409.
Xu Z Q, Zhang J J, He J K, et al. Research progress in biomedical rubber [J]. China Synthetic Rubber Industry, 2015, 38(5): 405‒409.
[4]
Yoda R. Elastomers for biomedical applications [J]. Journal of Biomaterials Science, Polymer Edition, 1998, 9(6): 561‒626.
[5]
马超群. 2024—2030年全球和中国医用弹性体市场前景研究与市场需求预测报告 [R]. 北京: 北京恒州博智国际信息咨询有限公司, 2024.
Ma C Q. Global and Chinese medical elastomers market prospect and demand forecast report [R]. Beijing: QYResearch, 2024.
[6]
中国产业研究院. 2024年中国医疗器械市场供需形势及行业发展趋势分析 [R]. 深圳: 中国产业研究院, 2024.
ChinaIRN. China medical devices market supply and demand situation and industry development trend analysis 2024 [R]. Shenzhen: ChinaIRN, 2024.
[7]
The Research Insights. Medical elastomers market size, share & trends analysis report by type (thermoplastic elastomer, thermoset elastomer), by application (medical tubes, medical bags, catheters, syringes, implants, gloves), by region, and segment forecasts, 2023—2030 [EB/OL]. (2025-03-15)[2025-05-15]. https://www.theresearchinsights.com/reports/medical-elastomers-market-5527.
[8]
鲍俊杰, 刘都宝, 黎兵, 等. 医用聚氨酯材料研究进展 [J]. 环球聚氨酯, 2007 (9): 72‒79.
Bao J J, Liu D B, Li B, et al. Progress of medical polyurethane materials research [J]. Polyurethane Monthly, 2007 (9): 72‒79.
[9]
Chattopadhyay D K, Raju K V S N. Structural engineering of polyurethane coatings for high performance applications [J]. Progress in Polymer Science, 2007, 32(3): 352‒418.
[10]
Delebecq E, Pascault J P, Boutevin B, et al. On the versatility of urethane/urea bonds: Reversibility, blocked isocyanate, and non-isocyanate polyurethane [J]. Chemical Reviews, 2013, 113(1): 80‒118.
[11]
Tang L, Long X R, He X L, et al. Improved in vivo stability of silicon-containing polyurethane by fluorocarbon side chain modulation of the surface structure [J]. Journal of Materials Chemistry B, 2021, 9(14): 3210‒3223.
[12]
Bonzani I C, Adhikari R, Houshyar S, et al. Synthesis of two-component injectable polyurethanes for bone tissue engineering [J]. Biomaterials, 2007, 28(3): 423‒433.
[13]
Kim S, Liu S. Smart and biostable polyurethanes for long-term implants [J]. ACS Biomaterials Science & Engineering, 2018, 4(5): 1479‒1490.
[14]
Wang H R, Li T, Li J, et al. Structural engineering of polyurethanes for biomedical applications [J]. Progress in Polymer Science, 2024, 151: 101803.
[15]
Sobczak M, Kędra K. Biomedical polyurethanes for anti-cancer drug delivery systems: A brief, comprehensive review [J]. International Journal of Molecular Sciences, 2022, 23(15): 8181.
[16]
Mo Y, Huang X Y, Hu C Q. Recent advances in the preparation and application of bio-based polyurethanes [J]. Polymers, 2024, 16(15): 2155.
[17]
马超群. 2024—2030全球及中国医用聚氨酯材料行业研究及十五五规划分析报告 [R]. 北京: 北京恒州博智国际信息咨询有限公司, 2024.
Ma C Q. 2024—2030 global and Chinese medical polyurethane materials industry research and the 15th Five-Year Plan analysis report [R]. Beijing: QYResearch, 2024.
[18]
王云兵. 生物医用心血管材料及器械 [M]. 北京: 科学出版社, 2022.
Wang Y B. Biomedical cardiovascular materials and instruments [M]. Beijing: Science Press, 2022.
[19]
国家食品药品监督管理总局关于发布医疗器械生产质量管理规范的公告 (2014年第64号) [EB/OL]. (2014-12-29)[2024-12-27]. https://www.nmpa.gov.cn/xxgk/ggtg/ylqxggtg/ylqxqtggtg/20141229120001274.html.
Announcement of the State Food and Drug Administration on the issuance of quality management standards for medical device production (No.64, 2014) [EB/OL]. (2014-12-29)[2024-12-27]. https://www.nmpa.gov.cn/xxgk/ggtg/ylqxggtg/ylqxqtggtg/20141229120001274.html.
[20]
Gunatillake P A, Dandeniyage L S, Adhikari R, et al. Advancements in the development of biostable polyurethanes [J]. Polymer Reviews, 2019, 59(3): 391‒417.
[21]
Heintz A M, Duffy D J, Hsu S L, et al. Effects of reaction temperature on the formation of polyurethane prepolymer structures [J]. Macromolecules, 2003, 36(8): 2695‒2704.
[22]
王春仁, 孙皎. 生物医学材料评价方法与技术 [M]. 北京: 科学出版社, 2022.
Wang C R, Sun J. Evaluation methods and techniques of biomedical materials [M]. Beijing: Sciecne Press, 2022.
[23]
马超群. 2024—2030全球与中国聚氨酯弹性体市场现状及未来发展趋势 [R]. 北京: 北京恒州博智国际信息咨询有限公司, 2024.
Ma C Q. 2024—2030 Global and Chinese polyurethane elastomer market status and future development trend [R]. Beijing: QYResearch, 2024.
[24]
王志明, 续晓方, 郭丰富. 双J管附壁结石研究进展简述 [J]. 微创泌尿外科杂志, 2020, 9(3): 212‒216.
Wang Z M, Xu X F, Guo F F. Progress in the study of double J-tube wall-attached stones [J]. Journal of Minimally Invasive Urology, 2020, 9(3): 212‒216.
[25]
满继承, 丁炳海. 聚氨酯弹性体在医疗领域的应用 [R]. 上海: 中国聚氨酯工业协会第十七次年会, 2014.
Man J C, Ding B H. Application of polyurethane elastomer in medical field [R]. Shanghai: The 17th Annual Meeting of the China Polyurethane Industry Association, 2014.
[26]
Al Kadah B, Naumann A, Schneider M, et al. Auricular reconstruction with polyethylene implants or silicone prosthesis: A single institution experience [J]. Journal of Cranio-Maxillofacial Surgery, 2018, 46(12): 2150‒2156.
[27]
Mitsuzawa S, Zhao C Z, Ikeguchi R, et al. Pro-angiogenic scaffold-free bio three-dimensional conduit developed from human induced pluripotent stem cell-derived mesenchymal stem cells promotes peripheral nerve regeneration [J]. Scientific Reports, 2020, 10(1): 12034.
[28]
王新官, 张瑜, 刘峻, 等. 有机/无机抗菌剂复合改性硅橡胶导尿管材料的制备及其对绿脓杆菌生物膜形成的影响 [J]. 有机硅材料, 2009, 23(3): 160‒164.
Wang X G, Zhang Y, Liu J, et al. Preparation of organic/inorganic antimicrobial composite modified silicone rubber catheter material and its effect on film formation of pseudomonas bacillus [J]. Silicone Material, 2009, 23(3): 160‒164.
[29]
Schmidt R W, de Bakker E, Ariese F. Silicone loss during histological preparation of breast implant tissue from capsular contracture, quantified by stimulated Raman scattering microscopy [J]. Journal of Biophotonics, 2025, 18(2): e202400415.
[30]
Brady B, Li W W, Farooque N, et al. S-nitrosothiol-impregnated silicone catheter for colorimetric sensing of indole and E. coli: Toward on-body detection of urinary tract infections [J]. ACS Sensors, 2022, 7(6): 1712‒1719.
[31]
Zhang J, Wei L, Liu J, et al. Effect of new silicone rubber impression disinfection process on model accuracy [J]. Chinese Journal of Stomatological Research (Electronic Edition), 2023, 17(4): 285.
[32]
王伟良. 热硫化硅橡胶的合成和加工(四) [J]. 有机硅材料, 2011, 25(6): 418‒419.
Wang W L. Synthesis and processing of thermal vulcanized silicone rubber (Ⅳ) [J]. Silicone Material, 2011, 25(6): 418‒419.
[33]
戚云霞, 赵士贵, 姜伟峰, 等. 加成型室温硫化硅橡胶的研究进展 [J]. 有机硅材料, 2006, 20(1): 34‒37, 52.
Qi Y X, Zhao S G, Jiang W F, et al. Development of addition-cured ambient vulcanization silicone rubber [J]. Silicone Material, 2006, 20(1): 34‒37, 52.
[34]
刘佳杰, 后振中, 杨庆浩, 等. 加成型液体硅橡胶的研究及应用进展 [J]. 材料导报, 2024, 38(20): 262‒268.
Liu J J, Hou Z Z, Yang Q H, et al. Research progress of additive liquid silicone rubber [J]. Materials Reports, 2024, 38(20): 262‒268.
[35]
医用硅橡胶材料及制品成型工艺 [M]. 西安: 西北工业大学出版社, 2002.
Molding process of medical silicone rubber materials and products [M]. Xi’an: Northwestern Polytechnical University Press, 2002.
[36]
马超群. 2024—2030 全球及中国医用硅橡胶行业研究及十五五规划分析报告 [R]. 北京: 北京恒州博智国际信息咨询有限公司, 2024.
Ma C Q. 2024—2030 Global and Chinese silicone rubber market status and 15th five-year plan analysis report [R]. Beijing: QYResearch, 2024.
[37]
Rahimi A, Mashak A. Review on rubbers in medicine: Natural, silicone and polyurethane rubbers [J]. Plastics, Rubber and Composites, 2013, 42(6): 223‒230.
[38]
Woitschach F, Kloss M, Kischkel S, et al. Utilization of a highly adaptable murine air pouch model for minimally invasive testing of the inflammatory potential of biomaterials [J]. Frontiers in Bioengineering and Biotechnology, 2024, 12: 1367366.
[39]
Gedawy A, Luna G, Martinez J, et al. Novel silicone-grafted alginate as a drug delivery scaffold: Pharmaceutical characterization of gliclazide-loaded silicone-based composite microcapsules [J]. Pharmaceutics, 2023, 15(2): 530.
[40]
Wang J J, Wang T J, Liu H Y, et al. Flexible electrodes for brain-computer interface system [J]. Advanced Materials, 2023, 35(47): 2211012.
[41]
Öchsner A, Altenbach H. Mechanical and materials engineering of modern structure and component design [M]. Cham: Springer Cham, 2015.
[42]
Carey A B, Cornish K, Schrank P, et al. Cross-reactivity of alternate plant sources of latex in subjects with systemic IgE-mediated sensitivity to hevea brasiliensis latex [J]. Annals of Allergy, Asthma & Immunology, 1995, 74(4): 317‒320.
[43]
Guerra N B, Sant’Ana Pegorin G, Boratto M H, et al. Biomedical applications of natural rubber latex from the rubber tree hevea brasiliensis [J]. Materials Science and Engineering: C, 2021, 126: 112126.
[44]
Andrade K L, Ramlow H, Floriano J F, et al. Latex and natural rubber: Recent advances for biomedical applications [J]. Polímeros, 2022, 32(2): e2022015.
[45]
Yip E, Cacioli P. The manufacture of gloves from natural rubber latex [J]. Journal of Allergy and Clinical Immunology, 2002, 110(2): S3‒S14.
[46]
Hu X H, Chen A, Luo Y G, et al. Steerable catheters for minimally invasive surgery: A review and future directions [J]. Computer Assisted Surgery, 2018, 23(1): 21‒41.
[47]
Frezieres R G, Walsh T L. Acceptability evaluation of a natural rubber latex, a polyurethane, and a new non-latex condom [J]. Contraception, 2000, 61(6): 369‒377.
[48]
Mikhaylov I A, Sukhareva K V, Andriasyan Y O, et al. Mechanochemical modification of natural rubber [R]. Tomsk: International Conference on Advanced Materials with Hierarchical Structure for New Technologies and Reliable Structures, 2016.
[49]
Mourad R M, Darwesh O M, Abdel-Hakim A. Enhancing physico-mechanical and antibacterial properties of natural rubber using synthesized Ag-SiO2 nanoparticles [J]. International Journal of Biological Macromolecules, 2020, 164: 3243‒3249.
[50]
Sethulekshmi A S, Saritha A, Joseph K. A comprehensive review on the recent advancements in natural rubber nanocomposites [J]. International Journal of Biological Macromolecules, 2022, 194: 819‒842.
[51]
Stephen R, Jose S, Joseph K, et al. Thermal stability and ageing properties of sulphur and gamma radiation vulcanized natural rubber (NR) and carboxylated styrene butadiene rubber (XSBR) latices and their blends [J]. Polymer Degradation and Stability, 2006, 91(8): 1717‒1725.
[52]
Wang P, Tan K L, Ho C C, et al. Surface modification of natural rubber latex films by graft copolymerization [J]. European Polymer Journal, 2000, 36(7): 1323‒1331.
[53]
Qi D L, Wu Z X, Chen B Q, et al. Integrative cultivation pattern, distribution, yield and potential benefit of rubber based agroforestry system in China [J]. Industrial Crops and Products, 2024, 220: 119228.
[54]
Li H M, Ma Y X, Liu W J, et al. Soil changes induced by rubber and tea plantation establishment: Comparison with tropical rain forest soil in Xishuangbanna, SW China [J]. Environmental Management, 2012, 50(5): 837‒848.
[55]
Viswanathan P K. Sustainable growth of China’s rubber industry in the era of global economic integration [J]. China Report, 2008, 44(3): 251‒279.
[56]
Yoda R. Elastomers for biomedical applications [J]. Journal of Biomaterials Science, Polymer Edition, 1998, 9(6): 561‒626.
[57]
Hamilton R G, Brown R H, Veltri M A, et al. Administering pharmaceuticals to latex-allergic patients from vials containing natural rubber latex closures [J]. American Journal of Health-System Pharmacy, 2005, 62(17): 1822‒1827.
[58]
Butany J, Ahluwalia M S, Munroe C, et al. Mechanical heart valve prostheses Identification and evaluation [J]. Cardiovascular Pathology, 2003, 12(1): 1‒22.
[59]
Jaganathan S K, Supriyanto E, Murugesan S, et al. Biomaterials in cardiovascular research: Applications and clinical implications [J]. BioMed Research International, 2014, 2014(1): 459465.
[60]
Jones K P, Rolf S, Stingl C, et al. Longitudinal study of sensitization to natural rubber latex among dental school students using powder-free gloves [J]. The Annals of Occupational Hygiene, 2004, 48(5): 455‒457.
[61]
Ebo D G, Stevens W J. IGE-mediated natural rubber latex allergy: An update [J]. Acta Clinica Belgica, 2002, 57(2): 58‒70.
[62]
Men X, Wang F, Chen G Q, et al. Biosynthesis of natural rubber: Current state and perspectives [J]. International Journal of Molecular Sciences, 2019, 20(1): 50.
[63]
Chen J P, Zhang D S, Chen Z, et al. Effect of agricultural social services on green production of natural rubber: Evidence from Hainan, China [J]. Sustainability, 2022, 14(21): 14138.
[64]
Ning N Y, Li S Q, Wu H G, et al. Preparation, microstructure, and microstructure-properties relationship of thermoplastic vulcanizates (TPVs): A review [J]. Progress in Polymer Science, 2018, 79: 61‒97.
[65]
田洪池, 张世甲, 韩吉斌, 等. 一种低硬度医用热塑性溴化丁基橡胶及其制备方法: CN104725732B [P]. 2017-05-24.
Tian H C, Zhang S J, Han J B, et al. A low-hardness medical thermoplastic bromobutyl rubber and its preparation method: CN104725732A [P]. 2015-06-24.
[66]
孟伟娟, 邱迎昕, 齐宇虹, 等. 国内外医用溴化丁基橡胶塞产业的发展现状 [J]. 橡胶科技, 2022, 20(4): 161‒165.
Meng W J, Qiu Y X, Qi Y H, et al. Development status of pharmaceutical brominated butyl rubber stopper industry at home and abroad [J]. Rubber Science and Technology, 2022, 20(4): 161‒165.
[67]
文敬滨, 龚光碧, 冯裕智, 等. 热塑性弹性体研究进展 [J]. 合成树脂及塑料, 2023, 40(5): 76‒82, 86.
Wen J B, Gong G B, Feng Y Z, et al. Research progress on TPE [J]. China Synthetic Resin and Plastics, 2023, 40(5): 76‒82, 86.
[68]
耿旭阳. SEBS-g-MAH的制备及其在TPE包胶尼龙中的粘接性能研究 [D]. 沈阳: 辽宁大学(硕士学位论文), 2023.
Geng X Y. Preparation of SEBS-g-MAH and its adhesive properties in TPE-coated nylon [D]. Shenyang: Liaoning University (Master’s thesis), 2023.
[69]
金玉顺, 伍一波, 刘若凡, 等. 热塑性弹性体的制备与改性研究进展 [J]. 弹性体, 2023, 33(6): 83‒91.
Jin Y S, Wu Y B, Liu R F, et al. Research progress in preparation and modification of thermoplastic elastomers [J]. China Elastomerics, 2023, 33(6): 83‒91.
[70]
郑宁来. 巴陵石化开发医用SEBS生产技术 [J]. 合成技术及应用, 2014, 29(3): 5.
Zheng N L. Development of medical SEBS production technology in baling petrochemical company [J]. Synthetic Technology & Application, 2014, 29(3): 5.
[71]
贺小进, 李伟, 陈建军. 氢化SBS国内外现状及发展趋势 [J]. 化工新型材料, 2008, 36(9): 10‒15.
He X J, Li W, Chen J J. The status and development trend of hydrogenated SBS at home and abroad [J]. New Chemical Materials, 2008, 36(9): 10‒15.
[72]
彭展. 医用 SEBS 材料打破国外垄断 [J]. 塑料科技, 2014, 42(5): 109.
Peng Z. Medical SEBS material breaks foreign monopoly [J]. Plastics Science and Technology, 2014, 42(5): 109.
[73]
Yuan S S, Li Y G, Luan S F, et al. Infection-resistant styrenic thermoplastic elastomers that can switch from bactericidal capability to anti-adhesion [J]. Journal of Materials Chemistry B, 2016, 4(6): 1081‒1089.
[74]
我国 SEBS 行业规模逐步扩大 2022年后高端生产力不断提升 [EB/OL]. (2022-06-30)[2025-04-15]. https://www.163.com/dy/article/HAVA2K0B0514E30D.html.
The scale of China’s SEBS industry is gradually expanding, and the high-end productivity has been continuously improving since 2022 [EB/OL]. (2022-06-30)[2025-04-15]. https://www.163.com/dy/article/HAVA2K0B0514E30D.html.
[75]
2023年我国SEBS行业市场需求现状、供给能力及主要竞争厂商分析 [EB/OL]. (2023-07-05)[2025-04-15]. https://www.leadingir.com/trend/view/7722.html.
Liding Industry Research.com Analysis of market demand, supply capacity and major competitors of China’s SEBS industry in 2023[EB/OL]. (2023-07-05)[ 2025-04-15]. https://www.leadingir.com/trend/view/7722.html.
[76]
Temenoff J S, Mikos A G. Biomaterials: The intersection of biology and materials science [M]. London: Pearson, 2008.
[77]
Jia B, Huang H Y, Dong Z C, et al. Degradable biomedical elastomers: Paving the future of tissue repair and regenerative medicine [J]. Chemical Society Reviews, 2024, 53(8): 4086‒4153.
[78]
Chen S, Wang Y H, Yang L, et al. Biodegradable elastomers for biomedical applications [J]. Progress in Polymer Science, 2023, 147: 101763.
[79]
Chen S, Wu Z K, Chu C Z, et al. Biodegradable elastomers and gels for elastic electronics [J]. Advanced Science, 2022, 9(13): 2105146.
[80]
Risley B B, Ding X C, Chen Y, et al. Citrate crosslinked poly(glycerol sebacate) with tunable elastomeric properties [J]. Macromolecular Bioscience, 2021, 21(2): e2000301.
[81]
Gyawali D, Tran R T, Guleserian K J, et al. Citric-acid-derived photo-cross-linked biodegradable elastomers [J]. Journal of Biomaterials Science Polymer Edition, 2010, 21(13): 1761‒1782.
[82]
Dey J, Xu H, Shen J H, et al. Development of biodegradable crosslinked urethane-doped polyester elastomers [J]. Biomaterials, 2008, 29(35): 4637‒4649.
[83]
Guo J S, Xie Z W, Tran R T, et al. Click chemistry plays a dual role in biodegradable polymer design [J]. Advanced Materials, 2014, 26(12): 1906‒1911.
[84]
Wu Y L, D’Amato A R, Yan A M, et al. Three-dimensional printing of poly(glycerol sebacate) acrylate scaffolds via digital light processing [J]. ACS Applied Bio Materials, 2020, 3(11): 7575‒7588.
[85]
北京恒州博智国际信息咨询有限公司. 2023—2029中国防过敏医用胶带市场现状研究分析与发展前景预测报告 [R]. 北京: 北京恒州博智国际信息咨询有限公司, 2023.
QYResearch. 2023—2029 China Hypoallergenic medical tape market status and forecast [R]. Beijing: QYResearch, 2023.
[86]
前瞻产业研究院. 2025—2030年中国骨科植入医疗器械行业发展前景预测与投资战略规划分析报告 [R]. 深圳: 前瞻产业研究院, 2025.
Qianzhan Industry Research Institute. China orthopedic implantable medical devices industry development outlook and investment strategy planning analysis report, 2025—2030 [R]. Shenzhen: Qianzhan Industry Research Institute, 2025.
[87]
Yang J, Webb A R, Ameer G A. Novel citric acid-based biodegradable elastomers for tissue engineering [J]. Advanced Materials, 2004, 16(6): 511‒516.
[88]
Wang Y D, Ameer G A, Sheppard B J, et al. A tough biodegradable elastomer [J]. Nature Biotechnology, 2002, 20(6): 602‒606.
[89]
Guo X W, Liang J H, Wang Z F, et al. Tough, recyclable, and degradable elastomers for potential biomedical applications [J]. Advanced Materials, 2023, 35(20): 2210092.
[90]
Zhang Z, He C L, Chen X S. Designing hydrogels for immunomodulation in cancer therapy and regenerative medicine [J]. Advanced Materials, 2024, 36(4): 2308894.
[91]
Zhong R B, Talebian S, Mendes B B, et al. Hydrogels for RNA delivery [J]. Nature Materials, 2023, 22(7): 818‒831.
[92]
Zhang Y F, Gong M, Wan P B. MXene hydrogel for wearable electronics [J]. Matter, 2021, 4(8): 2655‒2658.
Funding
Funding project: Chinese Academy of Engineering project “Strategic Research on the Development of Biomedical Elastomer Materials in China under the New Era”(2023-XZ-69)
AI Summary AI Mindmap
PDF(700 KB)

Accesses

Citations

Detail

Sections
Recommended

/