Strategic Study of Chinese Academy of Engineering >
Transforming and Upgrading Nonferrous Metal Industry with Artificial Intelligence
Received date: 24 Aug 2018
Published date: 01 Apr 2018
Nonferrous metals are important fundamental and strategic materials for national economy and the national defense industry. In recent years, the nonferrous metal industry has made great progress in China. However, it is still facing the challenges of green, efficient, and intelligent development. In the nonferrous metal industry, the production conditions are complicated, the raw materials are changeable, and requirements for resources, energies, and environment protection become increasingly strict. Therefore, techniques for sensitive perception, precise operation, intelligent analysis, and quick decision-making are needed for coping with these complex changes and strict requirements. The rapid development of artificial intelligence fitly provides the core techniques for the transformation and upgrading of the nonferrous metal production process. In this paper, three aspects are mainly discussed: development and bottlenecks of the nonferrous metal industry, two cases of transforming and upgrading the nonferrous metal industry with artificial intelligent, and the challenges faced by artificial intelligence in the transformation and upgrading of the nonferrous metal production.
Xiaofeng Yuan , Weihua Gui , Xiaofang Chen , Keke Huang , Chunhua Yang . Transforming and Upgrading Nonferrous Metal Industry with Artificial Intelligence[J]. Strategic Study of Chinese Academy of Engineering, 2018 , 20(4) : 59 -65 . DOI: 10.15302/J-SSCAE-2018.04.010
[1] |
周济. 智能制造——“ 中国制造2025” 的主攻方向 [J]. 中国机械工程, 2015, 26(17): 2273–2284.
|
[2] |
桂卫华, 阳春华, 徐德刚, 等. 基于机器视觉的矿物浮选过程监控技术研究进展 [J]. 自动化学报, 2013, 39(11): 1879–1888.
|
[3] |
黄三思. 基于泡沫图像特征的铝土矿粗选矿浆浓度预测模型 [D]. 长沙: 中南大学(硕士学位论文), 2013.
|
[4] |
魏利君. 基于多槽机器视觉的铝土矿浮选精矿品位预测方法研究 [D]. 长沙: 中南大学(硕士学位论文), 2014.
|
[5] |
周开军, 阳春华, 牟学民, 等. 基于图像特征提取的浮选关键参数智能预测算法 [J]. 控制与决策, 2009, 24(9): 1300–1305.
|
[6] |
Liu J, Gui W, Tang Z, et al. Recognition of the operational status-es of reagent addition using dynamic bubble size distribution in copper flotation process [J]. Minerals Engineering, 2013, 45(5): 128–141.
|
[7] |
Xu C, Gui W, Yang C, et al. Flotation process fault detection using output PDF of bubble size distribution [J]. Minerals Engineering, 2012, 26(1): 5–12.
|
[8] |
任会峰, 阳春华, 周璇, 等. 基于泡沫图像特征加权SVM 的浮选工况识别 [J]. 浙江大学学报(工学版), 2011, 45(12): 2115–2119.
|
[9] |
Zhu J, Gui W, Liu J, et al. Combined fuzzy based feed forward and bubble size distribution based feedback control for reagent dosage in copper flotation process [J]. Journal of Process Control, 2016, 39: 50–63.
|
[10] |
唐朝晖, 王伟, 刘金平, 等. 基于泡沫尺寸PDF 模型的铜粗选过程加药量预测控制 [J]. 中南大学学报(自然科学版), 2015 (3): 856–863.
|
[11] |
王晓丽, 曾子骄, 黄蕾, 等. 基于图像特征的锑浮选矿浆pH 值预测控制 [J]. 控制与决策, 2016, 31(11): 1973–1978.
|
[12] |
王飞跃. 天命唯新: 迈向知识自动化——《自动化学报》创刊50 周年专刊序 [J]. 自动化学报, 2013, 39(11): 1741–1743.
|
[13] |
桂卫华, 陈晓方, 阳春华, 等. 知识自动化及工业应用 [J]. 中国科学: 信息科学, 2016, 46(8): 1016–1034.
|
[14] |
Manyika J, Chui M, Bughin J, et al. Disruptive technologies: Ad-vances that will transform life, business, and the global economy [R]. New York: McKinsey Global Institute, 2013.
|
[15] |
桂卫华, 黄泰松, 阳春华. 一种改进遗传算法及其在企业原料采购优化中的应用 [J]. 矿冶工程, 2001, 21(3): 59–62.
|
[16] |
桂卫华, 黄泰松, 朱爽, 等. 智能集成有色冶炼企业原料采购量价预警系统研究 [J]. 小型微型计算机系统, 2002, 23(11): 1366–1370.
|
/
〈 | 〉 |