Phototherapy of Neurodegenerative Diseases: Mechanism, Application, and Prospect

  • Xunbin Wei 1, 2 ,
  • Feifan Zhou 3 ,
  • Lechan Tao 2 ,
  • Sihua Yang 4 ,
  • Bobo Gu 2
Expand
  • 1.Biomedical Engineering Department, Peking University, Beijing 100191, China;
  • 2.Med-X Research Institute & School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China;
  • 3.College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518061, Guangdong, China;
  • 4.MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China

Received date: 25 Mar 2020

Published date: 01 Mar 2020

Abstract

Neurodegenerative diseases are a heterogeneous group of irreversible illnesses caused by the progressive loss of neuronal structure or function, leading to cognitive and movement disorders, without safe and effective treatments. Exploring the application potential of non-invasive physical therapy for neurodegenerative diseases is of great significance for disease remission and effective control. Phototherapy is a method that uses the interaction of light and tissue to treat diseases and promote the rehabilitation of the body through photochemical or photophysical reactions, with precise and minimally invasive features. Low-light therapy is a type of non-invasive phototherapy that is used in promoting wound healing, pain relief, inflammation regression, and tissue regeneration. Clinical studies have also confirmed that low-light therapy can effectively improve the pathological symptoms of patients with neurodegenerative diseases. Thus, as a non-invasive physical therapy, low-light therapy provides a promising new direction for the relief and effective control of neurodegenerative diseases. This article summarizes the research progress of low-light therapy for neurodegenerative diseases and prospects its application in conjunction with the development of optoelectronic technology. It is suggested that the mechanism and dose effect relationship of low light should be clarified, new low-light treatment technology should be developed, and the clinical verification system and evaluation index should be improved, so as to benefit patients and serve the society as soon as possible.

Cite this article

Xunbin Wei , Feifan Zhou , Lechan Tao , Sihua Yang , Bobo Gu . Phototherapy of Neurodegenerative Diseases: Mechanism, Application, and Prospect[J]. Strategic Study of Chinese Academy of Engineering, 2020 , 22(3) : 108 -116 . DOI: 10.15302/J-SSCAE-2020.03.017

一、 光学疗法的兴起

神经退行性疾病是机体神经元结构或功能逐渐丧失导致认知及运动障碍的一类不可逆损伤性疾病,包括肌萎缩侧索硬化症(ALS)、帕金森病(PD)、阿尔茨海默病(AD)、亨廷顿氏病(HD)以及脊髓性肌萎缩症(SMA)等。由于目前发病机制尚不明确,以及缺乏有效的治疗手段,神经退行性疾病已成为基础科学和临床科学的研究焦点。每年,全世界被诊断患有与年龄相关的神经退行性疾病的患者数量正在迅速增加,并逐渐成为老龄化人口中常见的死亡原因。AD 和 PD 是最常见的两种神经退行性疾病,我国 65 岁以上老年人 PD 的发病率为 1.7%,患者人口已经超过 250 万,AD 患病率为 3.21%,患病人口已经超过 800 万。随着中国人口老龄化的迅速发展,AD 和 PD 发病率逐年攀升,不仅威胁患者自身的生活质量,而且其不断增加的医疗和护理费用已造成严重的社会经济困境。然而,由于目前还没有有效的治疗方法来阻止或延缓患者病情的恶化,因此 AD 和 PD 的治疗和护理将面临巨大挑战。开发早期无创检测技术和无创治疗手段是预防和控制该类疾病发展、缓解社会医疗负担的关键所在。然而,神经疾病的无创诊疗一直是个世界性难题。
光学疗法是一种利用光线照射损伤部位从而缓解或治疗疾病的一种无创或微创治疗手段。1903年,丹麦科学家 Niels Finsen 凭借红光治疗红斑狼疮获得第三届诺贝尔生理学或医学奖,自此开启了光学治疗的新篇章。1967 年匈牙利科学家 Endre Mester 发现 694 nm 红宝石激光可以促进小鼠毛发再生和伤口愈合,这是首次发现的激光生物刺激效应,它开启了医学领域的一条崭新的途径,并进而发展形成“低剂量激光疗法”,又称弱激光治疗,是指激光作用于生物组织时,不造成生物组织不可逆的损伤,但可以刺激机体产生一系列的生理生化反应,对组织或机体起到调节、增强或抑制的作用,从而达到治疗疾病的目的。目前,光学疗法形成了包括强激光治疗、光动力治疗、弱激光治疗在内的三大光学治疗技术,已广泛应用于临床多个科室多种疾病的治疗,并以精准性、微创 / 无创性为技术突破方向,引领医学治疗模式的转变。
近年来,许多研究利用弱光治疗动物神经退行性疾病,发现可通过调控神经元及小胶质细胞活性,有效减缓神经元死亡,延缓疾病进程 [1,2]。相关临床试验也获得积极结果,能够有效改善神经退行性疾病患者的病理症状。基于光电子技术的迅猛发展和光遗传技术的应用,弱光治疗设备逐渐微型化、智能化,弱光治疗技术趋向于精准靶向调控。作为一种副作用小的无创物理疗法,弱光治疗为神经退行性疾病提供了一个非常具有前景的新方向。探讨弱光治疗在神经退行性疾病治疗中的潜在应用和发展,将引领其发展方向,促进其临床应用,规范其市场转化,为神经退行性疾病患者提供有效的治疗方法,为缓解社会老龄化导致的护理和医疗负担提供可行的解决方案。

二、弱光治疗发展现状

弱光治疗,又称光生物调节(PBM),是使用红光或近红外光调节受损组织达到治疗目的的一种无创光疗类型,在促进伤口愈合、缓解疼痛、炎症消退中有良好功效,已广泛应用于临床。尽管已有系列研究报道 PBM 在神经保护中的作用,但其光生物学机制尚不完全清楚。美国 Hamblin 教授 [3,4]团队的研究表明 810 nm 弱激光可通过上调神经元细胞色素 C 氧化酶(CCO)活性,进而增强线粒体功能,增加腺嘌呤核苷三磷酸(ATP)产量,从而缓解神经元死亡。国内邢达教授团队多年的研究认为 633 nm 弱激光通过激活细胞膜表面非受体酪氨酸激酶,从而引发一系列下游信号转导,增强细胞增殖信号,抑制细胞凋亡信号,从而抵抗神经元死亡 [5~7]。另外,其团队发现弱激光可以通过激活非受体酪氨酸激酶来抑制活化的小胶质细胞,降低其产生的神经毒性,并增强其吞噬能力,清除 β-淀粉样蛋白(Aβ)聚集体 [8]。两种作用机制如图 1 所示。目前,越来越多的研究小组尝试使用不同波长、不同模式的光调控神经细胞活性,达到延缓疾病进展的目的。
图 2 弱光疗法的潜在研究方向及相关性

四、结语

相关研究已经在不同动物模型和病人中验证PBM 对 AD、PD 等的疗效,表明 PBM 可能是未来治疗这些疾病的一种有效的替代疗法。由于 PBM 相对无副作用的优点,它还可以作为当前有效治疗的辅助疗法,甚至可能发展为一种预防性理疗手段,总的来说,光疗在脑疾病的治疗和防治中是非常有前景的。但光疗要成为一种广泛可及的治疗方法,目前的动物实验和小型临床验证是远远不够的,只有把阐明组织靶向作用机理、远程作用机理,开发新型弱光治疗技术,完善临床验证等体系及评价指标等几个方向相互协作,共同发展,才能促进光学疗法的临床应用和推广,尽快造福病患,服务社会。
[1]
Yun S H, Kwok S J J. Light in diagnosis, therapy and surgery [J]. Nature Biomedical Engineering, 2017, 1(1): 1–16.

[2]
Hong N. Photobiomodulation as a treatment for neurodegenerative disorders: Current and future trends [J]. Biomedical Engineering Letters, 2019, 9(3): 359–366.

[3]
Hamblin M R. Shining light on the head: Photobiomodulation for brain disorders [J]. BBA Clinical, 2016, 6: 113–124.

[4]
Hamblin M R. Mechanisms and mitochondrial redox signaling in photobiomodulation [J]. Photochemistry and Photobiology, 2018, 94(2): 199–212.

[5]
Meng C, He Z, Xing D. Low-level laser therapy rescues dendrite atrophy via upregulating BDNF expression: Implications for Alzheimer’s disease [J]. Journal of Neuroscience, 2013, 33(33): 13505–13517.

[6]
Zhang H, Wu S, Xing D. Inhibition of Aβ25–35-induced cell apoptosis by Low-power-laser-irradiation (LPLI) through promoting Akt-dependent YAP cytoplasmic translocation [J]. Cellular Signalling, 2012, 24(1): 224–32.

[7]
Liang J, Liu L, Xing D. Photobiomodulation by low-power laser irradiation attenuates Aβ-induced cell apoptosis through the Akt/GSK3β/β-catenin pathway [J]. Free Radical Biology and Medicine, 2012, 53(7): 1459–1467.

[8]
Song S, Zhou F, Chen W R. Low-level laser therapy regulates microglial function through Src-mediated signaling pathways: Implications for neurodegenerative diseases [J]. Journal of Neuroinflammation, 2012, 9(1): 219.

[9]
Birks J S. Cholinesterase inhibitors for Alzheimer’s disease [J]. Cochrane database of systematic reviews, 2006, 1(1): CD005593.

[10]
Kishi T, Matsunaga S, Iwata N. The effects of memantine on behavioral disturbances in patients with Alzheimer’s disease: A meta-analysis [J]. Neuropsychiatric Disease and Treatment, 2017, 13: 1909.

[11]
Taboada L D, Yu J, El-Amouri S, et al. Transcranial laser therapy attenuates amyloid-β peptide neuropathology in amyloid-β protein precursor transgenic mice [J]. Journal of Alzheimer’s Disease, 2011, 23(3): 521–535.

[12]
Tao L, Wang X, Zhou Q, et al. Near infra-red light treatment of Alzheimer’s disease [C]. Bellingham: International Society for Optics and Photonics, 2019.

[13]
Purushothuman S, Johnstone D M, Nandasena C, et al. Photobiomodulation with near infrared light mitigates Alzheimer’s disease-related pathology in cerebral cortex–evidence from two transgenic mouse models [J]. Alzheimer’s Research & Therapy, 2014, 6(1): 2.

[14]
Farfara D, Tuby H, Trudler D, et al. Low-level laser therapy ameliorates disease progression in a mouse model of Alzheimer’s disease [J]. Journal of Molecular Neuroscience, 2015, 55(2): 430–436.

[15]
Comerota M M, Krishnan B, Taglialatela G. Near infrared light decreases synaptic vulnerability to amyloid beta oligomers [J]. Scientific Reports, 2017, 7(1): 1–11.

[16]
Lu Y, Wang R, Dong Y, et al. Low-level laser therapy for beta amyloid toxicity in rat hippocampus [J]. Neurobiology of Aging, 2017, 49: 165–182.

[17]
Grillo S L, Duggett N A, Ennaceur A, et al. Non-invasive infra-red therapy (1072 nm) reduces β-amyloid protein levels in the brain of an Alzheimer’s disease mouse model, TASTPM [J]. Journal of Photochemistry and Photobiology B: Biology, 2013, 123: 13–22.

[18]
Zinchenko E, Navolokin N, Shirokov A, et al. Pilot study of transcranial photobiomodulation of lymphatic clearance of betaamyloid from the mouse brain: Breakthrough strategies for nonpharmacologic therapy of Alzheimer’s disease [J]. Biomedical Optics Express, 2019, 10(8): 4003–4017.

[19]
Zhang Y, Wang F, Luo X, et al. Cognitive improvement by photic stimulation in a mouse model of Alzheimer’s disease[J]. Current Alzheimer Research, 2015, 12(9): 860–869.

[20]
Iaccarino H F, Singer A C, Martorell A J, et al. Gamma frequency entrainment attenuates amyloid load and modifies microglia [J]. Nature, 2016, 540(7632): 230–235.

[21]
Adaikkan C, Middleton S J, Marco A, et al. Gamma entrainment binds higher-order brain regions and offers neuroprotection [J]. Neuron, 2019, 102(5): 929–943.

[22]
Martorell A J, Paulson A L, Suk H-J, et al. Multi-sensory gamma stimulation ameliorates Alzheimer’s-associated pathology and improves cognition [J]. Cell, 2019, 177(2): 256–271, e22.

[23]
金丽英, 石秉霞, 周畅. 半导体激光疗法对轻度认知障碍病人 β-类淀粉样蛋白的影响 [J]. 青岛大学医学院学报, 2000, 36(3): 175–176. Jin L Y, Shi B X, Zhou C. The effect on serum amyloid β protein of patients with mild cognitive impairment after semiconductor laser therapy [J]. Journal of Qingdao University (Medical Sciences), 2000, 36(3): 175–176.

[24]
Arakelyan H S. Treatment of Alzheimer’s disease with a combination of laser, magnetic field and chromo light (colour) therapies: A double-blind controlled trial based on a review and overview of the etiological pathophysiology of Alzheimer’s disease [J]. Laser Therapy, 2005, 14(1): 19–28.

[25]
Maksimovich I V. Dementia and cognitive impairment reduction after laser transcatheter treatment of Alzheimer’s disease [J]. World Journal of Neuroscience, 2015, 5(3): 189.

[26]
Lim L. The potential of treating Alzheimer’s disease with intranasal light therapy [C]. Toronto: MedicLights Research Inc., 2013.

[27]
Berman M H, Halper J P, Nichols T W, et al. Photobiomodulation with near infrared light helmet in a pilot, placebo controlled clinical trial in dementia patients testing memory and cognition [J]. Journal of Neurology and Neuroscience, 2017, 8(1): 176.

[28]
Saltmarche A E, Naeser M A, Ho K F, et al. Significant improvement in cognition in mild to moderately severe dementia cases treated with transcranial plus intranasal photobiomodulation: case series report [J]. Photomedicine and Laser Surgery, 2017, 35(8): 432–441.

[29]
Shaw V E, Peoples C, Spana S, et al. Patterns of cell activity in the subthalamic region associated with the neuroprotective action of near-infrared light treatment in MPTP-treated mice [J]. Parkinson’s Disease, 2012, 2012 : 296875.

[30]
Moro C, Torres N, Massri N E, et al. Photobiomodulation preserves behaviour and midbrain dopaminergic cells from MPTP toxicity: Evidence from two mouse strains [J]. BMC Neuroscience, 2013, 14(1): 40.

[31]
Massri N E, Johnstone D M, Peoples C L, et al. The effect of different doses of near infrared light on dopaminergic cell survival and gliosis in MPTP-treated mice [J]. International Journal of Neuroscience, 2016, 126(1): 76–87.

[32]
Reinhart F, Massri N E, Chabrol C, et al. Intracranial application of near-infrared light in a hemi-parkinsonian rat model: The impact on behavior and cell survival [J]. Journal of Neurosurgery, 2016, 124(6): 1829–1841.

[33]
Purushothuman S, Nandasena C, Johnstone D M, et al. The impact of near-infrared light on dopaminergic cell survival in a transgenic mouse model of parkinsonism [J]. Brain Research, 2013, 1535: 61–70.

[34]
Reinhart F, Massri N E, Darlot F, et al. 810 nm near-infrared light offers neuroprotection and improves locomotor activity in MPTPtreated mice [J]. Neuroscience Research, 2015, 92: 86–90.

[35]
Moro C, Massri N E, Torres N, et al. Photobiomodulation inside the brain: A novel method of applying near-infrared light intracranially and its impact on dopaminergic cell survival in MPTP-treated mice [J]. Journal of Neurosurgery, 2014, 120(3): 670–683.

[36]
Darlot F, Moro C, Massri N E, et al. Near-infrared light is neuroprotective in a monkey model of Parkinson disease [J]. Annals of Neurology, 2016, 79(1): 59–75.

[37]
Massri N E, Lemgruber A P, Rowe I J, et al. Photobiomodulationinduced changes in a monkey model of Parkinson’s disease: Changes in tyrosine hydroxylase cells and GDNF expression in the striatum [J]. Experimental Brain Research, 2017, 235(6): 1861–1874.

[38]
Johnstone D M, El Massri N, Moro C, et al. Indirect application of near infrared light induces neuroprotection in a mouse model of parkinsonism—An abscopal neuroprotective effect [J]. Neuroscience, 2014, 274: 93–101.

[39]
Kim B, Mitrofanis J, Stone J, et al. Remote tissue conditioning is neuroprotective against MPTP insult in mice [J]. Ibro Reports, 2018, 4: 14–17.

[40]
Ganeshan V, Skladnev N V, Kim J Y, et al. Pre-conditioning with remote photobiomodulation modulates the brain transcriptome and protects against MPTP insult in mice [J]. Neuroscience, 2019, 400: 85–97.

[41]
Santos L, Olmo-Aguado S D, Valenzuela P L, et al. Photobiomodulation in Parkinson’s disease: A randomized controlled trial [J]. Brain Stimulation, 2019, 12(3): 810.

[42]
Willis G L, Boda J, Freelance C B. Polychromatic light exposure as a therapeutic in the treatment and management of Parkinson’s disease: A controlled exploratory trial [J]. Frontiers in Neurology, 2018, 9: 741.

[43]
Paus S, Schmitz-Hübsch T, Wüllner U, et al. Bright light therapy in Parkinson’s disease: A pilot study [J]. Movement Disorders: Official Journal of the Movement Disorder Society, 2007, 22(10): 1495–1498.

[44]
Videnovic A, Klerman E B, Wang W, et al. Timed light therapy for sleep and daytime sleepiness associated with Parkinson disease: A randomized clinical trial [J]. Jama Neurology, 2017, 74(4): 411–418.

[45]
Rutten S, Vriend C, Smit J H, et al. Bright light therapy for depression in Parkinson disease: A randomized controlled trial [J]. Neurology, 2019, 92(11): e1145–e1156.

[46]
Gonzalez-Lima F, Barrett D W. Augmentation of cognitive brain functions with transcranial lasers [J]. Frontiers in Systems Neuroscience, 2014, 8: 36.

[47]
Barrett D W, Gonzalez-Lima F. Transcranial infrared laser stimulation produces beneficial cognitive and emotional effects in humans [J]. Neuroscience, 2013, 230: 13–23.

[48]
Jahan A, Nazari M A, Mahmoudi J, et al. Transcranial near-infrared photobiomodulation could modulate brain electrophysiological features and attentional performance in healthy young adults [J]. Lasers in Medical Science, 2019, 34(6): 1193–1200.

[49]
Song P, Han T, Lin H, et al. Transcranial near-infrared stimulation may increase cortical excitability recorded in humans [J]. Brain Research Bulletin, 2020, 155: 155–158.

[50]
Hart N S, Fitzgerald M. A new perspective on delivery of rednear-infrared light therapy for disorders of the brain [J]. Discovery Medicine, 2016, 22(120): 147–156.

Outlines

/