Strategic Study of Chinese Academy of Engineering >
Beijing‒Tianjin‒Hebei Coordinated Development toward the Carbon Peaking and Carbon Neutrality Goals
Received date: 21 Nov 2022
Published date: 05 Jul 2023
The Beijing‒Tianjin‒Hebei (BTH) region is intensive in energy consumption and carbon emission. Under the constraint of the carbon peaking and carbon neutrality goals, it is significant to analyze the coordinated development policies that synergistically promote low-carbon economic and social transformation in the BTH region. A long-range energy alternatives planning system (LEAP)-BTH model is constructed considering the characteristics of the BTH region, to analyze the energy demand and carbon emission of the region from 2021 to 2060. Three scenarios are considered, namely baseline scenario, low-carbon scenario, and coordinated scenario, and eight sub-scenarios are taken into account. The results indicate that: (1) In the baseline scenario, the energy demand in the BTH region will continue to grow, and the carbon emissions of Beijing, Tianjin, and Hebei in 2060 will decrease to 41%, 40%, and 53% of that in 2020, respectively, facing great challenges for achieving carbon neutrality. (2) In the low-carbon scenario, the carbon emissions of Beijing, Tianjin, and Hebei in 2060 will decrease to 20%, 26%, and 46% of that in 2020, respectively, and the BTH region will still not be carbon neutral. (3) In the coordinated scenario, the carbon emissions of Beijing, Tianjin, and Hebei in 2060 will decrease to 13%, 15%, and 21% of that in 2020, respectively, thus achieving carbon neutrality. Several suggestions were further proposed. Beijing, Tianjin, and Hebei should adopt clearer and stricter policies for their key emission reduction sectors and measures. For example, Beijing should promote low-carbon transition in its transportation and construction sectors, while Tianjin and Hebei should promote renewable energy alternatives and low-carbon industrial upgrading. Top-level design should be optimized to fully tap the potentials for coordinated development of industry, energy, transportation, and other sectors, with the focus on promoting coordinated industrial upgrading and coordinated energy development.
Yujie Huang , Guixian Liu , Yu Bo , Jie Wang , Mingyue Cao , Xi Lu , Kebin He . Beijing‒Tianjin‒Hebei Coordinated Development toward the Carbon Peaking and Carbon Neutrality Goals[J]. Strategic Study of Chinese Academy of Engineering, 2023 , 25(2) : 160 -172 . DOI: 10.15302/J-SSCAE-2023.07.013
[1] |
Yu X H, Liang Z F, Fan J J, al et. Spatial decomposition of city-level CO2 emission changes in Beijing‒Tianjin‒Hebei [J]. Journal of Cleaner Production, 2021, 296: 126613.
|
[2] |
Guan Y, Shan Y, Huang Q, al et. Assessment to China´s recent emission pattern shifts [J]. Earth´s Future, 2021, 9(11): e2021EF002241.
|
[3] |
Tian W, Li W H, Song H F, al et. Analysis on the difference of regional high-quality development in Beijing‒Tianjin‒Hebei city cluster [J]. Procedia Computer Science, 2022, 199: 1184‒1191.
|
[4] |
Jia M Y, Zhang H R, Yang Z. Compactness or sprawl: Multi-dimensional approach to understanding the urban growth patterns in Beijing‒Tianjin‒Hebei region, China [J]. Ecological Indicators, 2022, 138: 108816.
|
[5] |
Liu L N, Lei Y L, Zhuang M H, al et. The impact of climate change on urban resilience in the Beijing‒Tianjin‒Hebei region [J]. Science of the Total Environment, 2022, 827: 154157.
|
[6] |
天津市统计局. 2020 年天津市国民经济和社会发展统计公报 [EB/OL]. (2021-03-12)[2023-01-03]. http://stats.tj.gov.cn/nianjian/2021nj/zk/html/gb01.pdf.
|
[7] |
河北省统计局. 河北省2020年国民经济和社会发展统计公报[EB/OL]. (2021-05-25)[2023-01-03]. http://www.hetj.gov.cn/hetj/app/tjgb/101611739068563.html.
|
[8] |
北京市交通委员会, 天津市交通运输委员会, 河北省交通运输厅. 京津冀交通一体化发展白皮书(2014—2020年) [EB/OL]. (2021-12-05)[2023-01-03]. http://zjb.henan.gov.cn/2021/12-31/2375076.html.
|
[9] |
李云燕, 宋伊迪. 碳中和目标下的北京城市道路移动源CO2和大气污染物协同减排效应研究 [J]. 中国环境管理, 2021, 13(3): 113‒120.
|
[10] |
Zhang D Y, Liu G Y, Chen C C, al et. Medium-to-long-term coupled strategies for energy efficiency and greenhouse gas emissions reduction in Beijing(China) [J]. Energy Policy, 2019, 127: 350‒360.
|
[11] |
Yang D W, Liu D D, Huang A M, al et. Critical transformation pathways and socio-environmental benefits of energy substitution using a LEAP scenario modeling [J]. Renewable and Sustainable Energy Reviews, 2021, 135: 110116.
|
[12] |
Liu Y Y, Chen S, Jiang K J, al et. The gaps and pathways to carbon neutrality for different type cities in China [J]. Energy, 2022, 244: 122596.
|
[13] |
郭秀锐, 刘芳熙, 符立伟, 等. 基于LEAP模型的京津冀地区道路交通节能减排情景预测 [J]. 北京工业大学学报, 2017, 43(11): 1743‒1749.
|
[14] |
Ma H T, Sun W, Wang S J, al et. Structural contribution and scenario simulation of highway passenger transit carbon emissions in the Beijing‒Tianjin‒Hebei metropolitan region, China [J]. Resources, Conservation and Recycling, 2019, 140: 209‒215.
|
[15] |
李新, 路路, 穆献中, 等. 基于LEAP模型的京津冀地区钢铁行业中长期减排潜力分析 [J]. 环境科学研究, 2019, 32(3): 365‒371.
|
[16] |
Sun L, Pan B L, Gu A L, al et. Energy-water nexus analysis in the Beijing‒Tianjin‒Hebei region: Case of electricity sector [J]. Renewable and Sustainable Energy Reviews, 2018, 93: 27‒34.
|
[17] |
蔺文亭, 李巍. 基于LEAP的京津冀地区能源结构调整战略居民健康收益评价 [J]. 环境与发展, 2017, 29(2): 14‒23.
|
[18] |
帕丽丹·艾尼瓦尔. 基于能源 ‒ 经济 ‒ 环境模型的京津冀能源系统优化研究 [D]. 北京: 华北电力大学, 2021.
|
[19] |
Liu T, Pan S, Hou H M, al et. Analyzing the environmental and economic impact of industrial transfer based on an improved CGE model: Taking the Beijing‒Tianjin‒Hebei region as an example [J]. Environmental Impact Assessment Review, 2020, 83: 106386.
|
[20] |
Yan Q Y, Wang Y X, Li Z Y, al et. Coordinated development of thermal power generation in Beijing‒Tianjin‒Hebei region: Evidence from decomposition and scenario analysis for carbon dioxide emission [J]. Journal of Cleaner Production, 2019, 232: 1402‒1417.
|
[21] |
Zhou J K, Chen Q R, Qi P, al et. Study on the supply and demand matching for policies related to the coordinated development of high haze industries such as thermal power industry and economy in the Beijing‒Tianjin‒Hebei region [J]. Energy Reports, 2022, 8: 502‒512.
|
[22] |
Liu X X, Yang M, Niu Q, al et. Cost accounting and sharing of air pollution collaborative emission reduction: A case study of Beijing‒Tianjin‒Hebei region in China [J]. Urban Climate, 2022, 43: 101166.
|
[23] |
中华人民共和国国家发展和改革委员会, 国家能源局. "十四五"现代能源体系规划 [EB/OL]. (2022-01-29)[2022-05-20]. http://www.nea.gov.cn/1310524241_16479412513081n.pdf.
|
[24] |
Stockholm Environment Institute. Low emissions analysis platform(LEAP) [EB/OL]. [2022-05-20]. https://leap.sei.org/
|
[25] |
李建伟. 我国劳动力供求格局, 技术进步与经济潜在增长率 [J]. 管理世界, 2020, 36(4): 96‒113.
|
[26] |
北京市统计局. 北京统计年鉴 [M]. 北京: 中国统计出版社, 2022.
|
[27] |
天津市统计局. 天津统计年鉴 [M]. 北京: 中国统计出版社, 2022.
|
[28] |
河北省统计局. 河北统计年鉴 [M]. 北京: 中国统计出版社, 2022.
|
[29] |
国家统计局. 中国城市统计年鉴 [M]. 北京: 中国统计出版社, 2022.
|
[30] |
国家统计局. 中国工业统计年鉴 [M]. 北京: 中国统计出版社, 2022.
|
[31] |
中国城市轨道交通协会. 城市轨道交通年度统计和分析报告 [R]. 北京: 中国城市轨道交通协会, 2022.
|
[32] |
北京交通发展研究院. 2021北京市交通发展年度报告[R]. 北京: 北京交通发展研究院, 2022.
|
[33] |
Liu L, Wang K, Wang S S, al et. Assessing energy consumption, CO2 and pollutant emissions and health benefits from China´s transport sector through 2050 [J]. Energy Policy, 2018, 116: 382‒396.
|
[34] |
北京市交通委员会. 北京市"十四五"时期智慧交通发展规划 [EB/OL]. (2022-05-17)[2022-08-15]. http://jtw.beijing.gov.cn/xxgk/tzgg/202209/t20220907_2810313.html.
|
[35] |
北京市人民政府. 北京市"十四五"时期能源发展规划 [EB/OL]. (2022-02-22)[2022-08-15]. http://www.beijing.gov.cn/zhengce/zhengcefagui/202204/t20220401_2646626.html.
|
[36] |
严晓辉, 高丹, 李艳杰. 京津冀地区推进能源革命的思考与对策 [J]. 中国工程科学, 2021, 23(1): 24‒31.
|
[37] |
"生态文明建设若干战略问题研究(三期)"综合组. 新时代我国生态文明区域协同发展战略研究 [J]. 中国工程科学, 2019, 21(5): 74‒79.
|
[38] |
Yue Q, Chai X C, Zhang Y J, al et. Analysis of iron and steel production paths on the energy demand and carbon emission in China´s iron and steel industry [J]. Environment, Development and Sustainability, 2022 (3): 1‒21.
|
[39] |
叶堂林, 李国梁. 京津冀发展报告(2021) [M]. 北京: 社会科学文献出版社, 2021.
|
[40] |
Guo X R, Shen Y Q, Chen D S, al et. Quantification of reduced disease burden resulting from air quality improvement by clean energy deployment in Hebei Province, China [J]. Energy Policy, 2021, 159: 112584.
|
[41] |
生态环境部环境规划院. 中国二氧化碳捕集利用与封存(CCUS)年度报告(2021)——中国CCUS路径研究 [R]. 北京: 生态环境部环境规划院, 2022.
|
[42] |
张希良, 黄晓丹, 张达, 等. 碳中和目标下的能源经济转型路径与政策研究 [J]. 管理世界, 2022, 38(1): 35‒51.
|
[43] |
Li Z X, Andersson F N G, Nilsson L J, al et. Steel decarbonization in China: A top‒down optimization model for exploring the first steps [J]. Journal of Cleaner Production, 2022: 135550.
|
[44] |
Zhou J K, Li Y T. Research on spatial distribution characteristics of high haze pollution industries such as thermal power industry in the Beijing-Tianjin-Hebei region [J]. Energies, 2022, 15(18): 6610.
|
[45] |
Guan Y R, Shan Y L, Huang Q, al et. Assessment to China´s recent emission pattern shifts [J]. Earth´s Future, 2021, 9(11): e2021EF002241.
|
[46] |
Yu X H, Liang Z F, Fan J J, al et. Spatial decomposition of city-level CO2 emission changes in Beijing‒Tianjin‒Hebei [J]. Journal of Cleaner Production, 2021, 296: 126613.
|
/
〈 | 〉 |