一、 前言
二、 数字化设计类工业软件价值分析
三、 国内外工业软件发展现状
省份 | 数量/家 |
---|---|
北京 | 203 |
上海 | 161 |
广东 | 145 |
江苏 | 115 |
浙江 | 56 |
湖北 | 33 |
山东 | 21 |
辽宁 | 16 |
福建 | 14 |
四川 | 13 |
陕西 | 12 |
重庆 | 11 |
Strategic Study of Chinese Academy of Engineering >
Development Strategies of Industrial Software for Digital Design
Received date: 22 Nov 2022
Published date: 05 Jul 2023
Industrial software for digital design is a mainstay of industrial software and the foundation for intelligent manufacturing; however, a large gap exists between relevant domestic industries and the international frontier. Therefore, it is urgent to improve these software to support China’s manufacturing sector to enter the international advanced ranks. This study explores the significance of the industrial software for digital design, reviews the development status of industrial software in China and abroad, and analyzes the challenges faced by related industries in China. Key breakthrough directions are summarized, including seamless integration of structural computer-aided design/computer-aided engineering software and optimization software; design, analysis, and optimization integrated software driven by geometric features; simulation calculation and analysis featuring multi-body, multi-state, and multiphysical field coupling; cloudification and customization of industrial software; and heterogeneous parallel computing supported by algorithm strategies. Furthermore, we propose the following suggestions: (1) sorting out subdivided areas and formulating targeted industry support policies, (2) encouraging software enterprises to draw on each other’s strengths and formulating unified domestic standards, (3) providing targeted support for small- and medium-sized enterprises to expand their customer market, (4) mproving personnel training programs to gather high-end research staff, and (5) strengthening basic research and exploiting the advantages of domestic innovation market.
Liang Gao , Peigen Li , Pei Huang , Zhen Yang , Jie Gao . Development Strategies of Industrial Software for Digital Design[J]. Strategic Study of Chinese Academy of Engineering, 2023 , 25(2) : 254 -262 . DOI: 10.15302/J-SSCAE-2023.07.017
省份 | 数量/家 |
---|---|
北京 | 203 |
上海 | 161 |
广东 | 145 |
江苏 | 115 |
浙江 | 56 |
湖北 | 33 |
山东 | 21 |
辽宁 | 16 |
福建 | 14 |
四川 | 13 |
陕西 | 12 |
重庆 | 11 |
[1] |
魏津瑜 , 李翔 . 基于工业互联网平台的装备制造企业价值共创机理研究 [J]. 科学管理研究 , 2020 , 38 1 : 106 ‒ 112 .
|
[2] |
陶永 , 蒋昕昊 , 刘默 , 等 . 智能制造和工业互联网融合发展初探 [J]. 中国工程科学 , 2020 , 22 4 : 24 ‒ 33 .
|
[3] |
赵飞宇 . 云架构CAD软件及其关键技术与应用综述 [J]. 计算机集成制造系统 , 2022 , 28 4 : 959 ‒ 978 .
|
[4] |
邵珠峰 , 赵云 , 王晨 , 等 . 新时期我国工业软件产业发展路径研究 [J]. 中国工程科学 , 2022 , 24 2 : 86 ‒ 95 .
|
[5] |
臧冀原 , 王柏村 , 孟柳 , 等 . 智能制造的三个基本范式: 从数字化制造、"互联网+"制造到新一代智能制造 [J]. 中国工程科学 , 2018 , 20 4 : 13 ‒ 18 .
|
[6] |
Shang C, You F Q. Data analytics and machine learning for smart process manufacturing: Recent advances and perspectives in the big data era [J]. Engineering, 2019, 5(6): 1010‒1016.
|
[7] |
高立兵 , 吕中原 , 索寒生 , 等 . 石油化工流程模拟软件现状与发展趋势 [J]. 化工进展 , 2021 , 40 Z2 : 1 ‒ 14 .
|
[8] |
丛力群 , 张云贵 , 刘强 , 等 . 钢铁行业工业软件发展探讨 [J]. 中国工程科学 , 2022 , 24 4 : 167 ‒ 176 .
|
[9] |
胡雅涵 , 寇贞贞 , 江源 , 等 . 建材行业工业软件发展研究 [J]. 中国工程科学 , 2022 , 24 4 : 177 ‒ 187 .
|
[10] |
阳春华 , 刘一顺 , 黄科科 , 等 . 有色金属工业智能模型库构建方法及应用 [J]. 中国工程科学 , 2022 , 24 4 : 188 ‒ 201 .
|
[11] |
李郁佳 , 孟嫣 . 加快研发设计软件发展, 增强竞争力 [J]. 中国科技信息 , 2022 12 : 125 ‒ 128 .
|
[12] |
钟志华 , 臧冀原 , 延建林 , 等 . 智能制造推动我国制造业全面创新升级 [J]. 中国工程科学 , 2020 , 22 6 : 136 ‒ 142 .
|
[13] |
李飞 , 乔晗 . 数字技术驱动的工业品服务商业模式演进研究——以金风科技为例 [J]. 管理评论 , 2019 , 31 8 : 295 ‒ 304 .
|
[14] |
胡朝斌 , 梁昌平 , 易风 , 等 . 多学科交叉复合的新兴工科专业建设与人才培养的探索与实践——以机械电子工程为例 [J]. 高教学刊 , 2021 , 7 21 : 23 ‒ 26 .
|
[15] |
工业和信息化部运行监测协调局 . 2018年软件和信息技术服务业统计公报 [J]. 智能制造 , 2019 1 : 34 ‒ 37 .
|
[16] |
张健 , 周乃春 , 李明 , 等 . 面向航空航天领域的工业 CFD 软件研发设计 [J]. 软件学报 , 2022 , 33 5 : 1529 ‒ 1550 .
|
[17] |
Sigmund O, Maute K. Topology optimization approaches [J]. Structural and Multidisciplinary Optimization, 2013, 48(6): 1031‒1055.
|
[18] |
Wu J, Sigmund O, P Groen J. Topology optimization of multi-scale structures: A review [J]. Structural and Multidisciplinary Optimization, 2021, 63(3): 1455‒1480.
|
[19] |
Wang C, Zhao Z, Zhou M, al et. A comprehensive review of educational articles on structural and multidisciplinary optimization [J]. Structural and Multidisciplinary Optimization, 2021, 64(5): 2827‒2880.
|
[20] |
Nguyen V P, Anitescu C, Bordas S P A, al et. Isogeometric analysis: An overview and computer implementation aspects [J]. Mathematics and Computers in Simulation, 2015, 117: 89‒116.
|
[21] |
Gao J, Wang L, Luo Z, al et. IgaTop: An implementation of topology optimization for structures using IGA in MATLAB [J]. Structural and Multidisciplinary Optimization, 2021, 64(3): 1669‒1700.
|
[22] |
Gao J, Gao L, Luo Z, al et. Isogeometric topology optimization for continuum structures using density distribution function [J]. International Journal for Numerical Methods in Engineering, 2019, 119(10): 991‒1017.
|
[23] |
Zhou Y, Gao L, Li H. Graded infill design within free-form surfaces by conformal mapping [J]. International Journal of Mechanical Sciences, 2022, 224: 107307.
|
[24] |
Gao J, Luo Z, Li H, al et. Topology optimization for multiscale design of porous composites with multi-domain microstructures [J]. Computer Methods in Applied Mechanics and Engineering, 2019, 344: 451‒476.
|
[25] |
Zhou Y, Zhang W H, Zhu J H, al et. Feature-driven topology optimization method with signed distance function [J]. Computer Methods in Applied Mechanics and Engineering, 2016, 310: 1‒32.
|
/
〈 | 〉 |