Strategic Study of Chinese Academy of Engineering >
Theoretical Method and Practice of Giant System for Mineral Resource Security
Received date: 17 Sep 2023
Published date: 15 Jan 2024
The natural, economic, and social attributes of mineral resources determine that the security of mineral resources involves numerous resource types, large spatial distribution, ultra-long industrial chains, huge industrial scale, spatial and temporal configurations, complex factors, and multiple levels; it is a complex and giant system with a large scale, multiple levels, and complex influencing factors. How to make this system operate efficiently and serve economic and social development is a complex scientific issue. This study puts forward a concept of giant system for mineral resource security by introducing the research idea of system science, depicts the structure and composition of the giant system, and reveals the driving mechanism of the giant system by natural resource, economic, social, and other factors. On this basis, a new research direction of system engineering of mineral resource security is established, which involves building a theoretical knowledge model for mineral resource security guarantee using a system thinking, constructing a simulation experiment system based on a big data platform, and actively promoting government decision-making and feedback. Furthermore, a major strategic idea of establishing an overall design department for mineral resource security is proposed. The research results have been applied to and effectively supported national resource security guarantee in China.
Qishen Chen , Qiang Zhang Yanfei, Xing Jiayun, Long Tao, Zheng Guodong, Wang Kun,Ren Xin, Li Zhenqing, Li . Theoretical Method and Practice of Giant System for Mineral Resource Security[J]. Strategic Study of Chinese Academy of Engineering, 2023 , 25(6) : 191 -201 . DOI: 10.15302/J-SSCAE-2023.10.001
[1] |
International Energy Agency. The role of critical minerals in clean energy transitions [EB/OL]. (2022-06-04)[2023-05-22]. https://iea.blob.core.windows.net/assets/ffd2a83b-8c30-4e9d-980a-52b6d9a86 fdc/TheRoleofCriticalMineralsinCleanEnergyTransitions.pdf.
|
[2] |
曹宛鹏. 美国在南海及周边地区的军事权力增长及军事存在演变 [J]. 世界地理研究, 2022, 31(4): 726‒736.
|
[3] |
张雅丽, 陈丽萍, 陈静, 等. 主要发达国家矿产资源安全保障战略 [J]. 国土资源情报, 2019 (11): 24‒30.
|
[4] |
陈其慎, 张艳飞, 邢佳韵, 等. 新冠疫情以来全球矿业发展态势[N]. 中国矿业报, 2021-10-22(02).
|
[5] |
陈甲斌, 刘超, 冯丹丹, 等. 矿产资源安全需要关注的六个风险问题 [J]. 中国国土资源经济, 2022, 35(1): 15‒21.
|
[6] |
European Directorate-General for Internal Market, Industry, Entrepreneurship and SMEs. European critical raw materials act [EB/OL].(2023-03-16)[2023-05-22]. https://single-market-economy.ec.europa.eu/publications/european-critical-raw-materials-act_en.
|
[7] |
U.S. Department of Commerce. A federal strategy to ensure secure and reliable supplies of critical minerals [EB/OL]. (2019-06-04)[2023-05-22]. https://www.commerce.gov/data-and-reports/reports/2019/06/federal-strategy-ensure-secure-and-reliable-supplies-critical-minerals.
|
[8] |
Ministry of Economy, Trade and Industry of Japan.重要鉱物に係る安定供給確保を図るための取組方針 [EB/OL]. (2023-01-19)[2023-05-22]. https://www.meti.go.jp/policy/economy/economic_security/metal/index.html.
|
[9] |
陈其慎, 张艳飞, 邢佳韵, 等. 国内外战略性矿产厘定理论与方法 [J]. 地球学报, 2021, 42(2): 137‒144.
|
[10] |
陈其慎, 张艳飞, 倪善芹, 等. 日本矿产资源经略强国战略分析 [J]. 中国矿业, 2017, 26(12): 8‒15.
|
[11] |
邢佳韵, 陈其慎, 龙涛, 等. 发达国家战略性矿产安全保障举措及启示 [J]. 自然资源情报, 2023 (1): 28‒36.
|
[12] |
葛建平, 刘佳琦. 关键矿产战略国际比较——历史演进与工具选择 [J]. 资源科学, 2020, 42(8): 1464‒1476.
|
[13] |
王礼茂, 郎一环. 中国资源安全研究的进展及问题 [J]. 地理科学进展, 2002 (4): 333‒340.
|
[14] |
姚予龙, 谷树忠. 资源安全机理及其经济学解释 [J]. 资源科学, 2002 (5): 46‒51.
|
[15] |
谷树忠, 姚予龙, 沈镭, 等. 资源安全及其基本属性与研究框架 [J]. 自然资源学报, 2002 (3): 280‒285.
|
[16] |
沈镭, 成升魁. 论国家资源安全及其保障战略 [J]. 自然资源学报, 2002 (4): 393‒400.
|
[17] |
第8号国情报告. 两种资源两个市场——构建中国资源安全保障体系研究 [J].科学新闻, 2001, 173(2): 24‒25.
|
[18] |
欧强, 马哲, 李天骄. 中国小金属海外供应安全评价 [J]. 中国矿业, 2019, 28(8): 56‒60.
|
[19] |
孙永波, 汪云甲. 矿产资源安全评价指标体系与方法研究 [J]. 中国矿业, 2005 (4): 36‒37.
|
[20] |
马伟东, 古德生. 我国铁矿资源基础安全评价研究 [J]. 矿冶工程, 2008, 28(6): 5‒7.
|
[21] |
周娜, 吴巧生, 薛双娇. 新时代战略性矿产资源安全评价指标体系构建与实证 [J]. 中国人口·资源与环境, 2020, 30(12): 55‒65.
|
[22] |
田郁溟, 琚宜太, 周尚国. 我国战略矿产资源安全保障若干问题的思考 [J]. 地质与勘探, 2022, 58(1): 217‒228.
|
[23] |
彭忠益, 卢珊, 胡翱. 大数据驱动下国家矿产资源安全现代化治理: 逻辑理路与模式构建 [J]. 中南大学学报(社会科学版), 2023, 29(2): 11‒21.
|
[24] |
钱学森. 开创复杂巨系统的科学与技术——祝中国系统工程学会第八届学术年会的召开 [J]. 系统工程理论与实践, 1995 (1): 1‒2.
|
[25] |
钱学森, 于景元, 戴汝为. 一个科学新领域——开放的复杂巨系统及其方法论 [J]. 自然杂志, 1990 (1): 3‒10.
|
[26] |
于景元. 钱学森系统科学思想和系统科学体系 [J]. 科学决策, 2014 (12): 2‒22.
|
[27] |
Boulding K E. General systems theory: The skeleton of science [J]. Management Science, 1956, 2(3): 197‒286.
|
[28] |
Backlund A. The definition of system [J]. Kybernetes, 2000, 29(4): 444‒451.
|
[29] |
李明华. 航天复杂巨系统工程管理体系及实施初探 [J]. 工程研究 ‒ 跨学科视野中的工程, 2020, 12(2): 155‒163.
|
[30] |
姚监复. 农业机械化是农业巨系统的子系统 [J]. 农业工程, 2011, 1(1): 14‒15.
|
[31] |
李少华, 董增川, 董四方. 水资源复杂巨系统及其和谐性探析 [J]. 水利发展研究, 2007 (7): 10‒14.
|
[32] |
钱学森. 系统科学、思维科学与人体科学 [J]. 福建体育科技, 1996 (3): 57‒63.
|
[33] |
钱学森. 现代地理科学系统建设问题 [J]. 地理环境研究, 1989 (2): 1‒6.
|
[34] |
钱学森, 许国志, 王寿云. 组织管理的技术——系统工程 [J]. 上海理工大学学报, 2011, 33(6): 520‒525.
|
[35] |
Ahlborg H, Ruiz-Mercado I, Molander S, et al. Bringing technology into social-ecological systems research — Motivations for a socio-technical-ecological systems approach [J]. Sustainability, 2019, 11(7): 2009.
|
[36] |
Dearing J A, Braimoh A K, Reenberg A, et al. Complex land systems: The need for long time perspectives to assess their future [J]. Ecology & Society, 2010, 15(4): 1‒19.
|
[37] |
Polhill J G, Edmonds B. Cognition and hypocognition: Discursive and simulation-supported decision-making within complex systems [J]. Futures, 2023 (148): 103121.
|
[38] |
Yu C H, Zhu Y P, Luo H T, et al. Design assessments of complex systems based on design oriented modelling and uncertainty analysis [J]. Mechanical Systems and Signal Processing, 2023 (188): 109988.
|
[39] |
Li A, Grimm V, Sullivan A, et al. Ecological modelling [J]. Ecological Modelling, 2021 (457): 109685.
|
[40] |
Bithell M, Edmonds B. The systematic comparison of agent-based policy models—It´s time we got our act together! [J]. Review of Artificial Societies and Social Simulation, 2021: 77046.
|
[41] |
Yang M, Sun Hao, Geng S Y. On the quantitative resilience assessment of complex engineered systems [J]. Process Safety and Environmental Protection, 2023 (174): 941‒950.
|
[42] |
陈其慎, 于汶加, 张艳飞, 等. 矿业发展周期理论与中国矿业发展趋势 [J]. 资源科学, 2015, 37(5): 891‒899.
|
[43] |
陈其慎, 于汶加, 张艳飞, 等. 资源 ‒ 产业“雁行式”演进规律 [J]. 资源科学, 2015, 37(5): 871‒882.
|
[44] |
陈其慎, 张艳飞, 邢佳韵, 等.矿产资源供应基地评价与供应链调查理论技术方法 [J]. 地球学报, 2021, 42(2): 159‒166.
|
[45] |
任鑫, 张艳飞, 邢佳韵, 等. 我国硫酸镍产业发展趋势及对策研究 [J]. 中国工程科学, 2022, 24(3): 40‒48.
|
[46] |
陈其慎, 干勇, 延建林, 等. 从矿产资源大国到矿产资源强国: 目标、措施与建议 [J]. 中国工程科学, 2019, 21(1): 49‒54.
|
[47] |
干勇, 彭苏萍, 毛景文, 等. 我国关键矿产及其材料产业供应链高质量发展战略研究 [J]. 中国工程科学, 2022, 24(3): 1‒9.
|
/
〈 | 〉 |