Strategic Study of Chinese Academy of Engineering >
Development Strategy of Vehicle-Energy-Road-Cloud Collaboration in the New Technological Situation
Received date: 19 Dec 2023
Published date: 22 May 2024
Vehicle ‒ energy‒road‒ cloud collaboration seamlessly integrates vehicles, energy, transportation, and the cloud, which is conducive to accelerating the formation of a new intelligent, low-carbon, safe, and efficient ecosystem of travel and life. The collaboration aims to promote the high-quality development of the automobile industry. However, in the new technological situation, further forming a sound ecology that features “intelligent car + interactive energy + digital road + collaborative cloud” and exploiting its value advantages are important tasks for the vehicle‒energy‒road‒cloud collaboration in China. This study analyzes the development trend of China’s automobile industry in the context of new energy transformation, the development of intelligent connected vehicles, artificial intelligence, carbon neutrality, and other new technological situations. It introduces the system composition, current development status, interrelationships, and overall framework of the vehicle‒energy‒road‒cloud industry from five aspects: vehicle, energy, road, cloud, and industry integration. This study also summarizes the opportunities and challenges faced by the integrated development of China’s vehicle‒energy‒road‒cloud industry. Based on this analysis, this study proposes countermeasures and suggestions for the vehicle ‒ energy‒ road ‒ cloud collaboration, covering five aspects: adhering to an application-oriented principle, promoting positive innovation, demonstrating city-level applications, leveraging diversified investments, and promoting the efficient development of circular industries. These suggestions aim to provide references for the high-quality collaboration of China’s vehicle, energy, road, and cloud industries, thereby strengthening the automobile, transportation, and manufacturing sectors of China.
Chao Yue , Jiaru Zhong , Qili Ning , Xiaohui Chen , Chao Sun , Wenwei Wang , Yubo Lian , Keqiang Li , Fengchun Sun . Development Strategy of Vehicle-Energy-Road-Cloud Collaboration in the New Technological Situation[J]. Strategic Study of Chinese Academy of Engineering, 2024 , 26(1) : 45 -58 . DOI: 10.15302/J-SSCAE-2024.01.003
[1] |
王云鹏. 国内外ITS系统发展的历程和现状 [J]. 汽车零部件, 2012 (6): 36.
|
[2] |
梅芳芳, 程莉芸, 周春梅. C-V2X车联网技术现状及发展前景研究 [J]. 通信与信息技术, 2022 (S2): 32‒35.
|
[3] |
李克强. 智能网联汽车云控基础平台及其实现 [C]. 北京: 首届车路协同自动驾驶国际论坛, 2018.
|
[4] |
段杰文. 智能网联汽车云平台和大数据分析 [J]. 汽车电器, 2020 (6): 8‒9.
|
[5] |
中国汽车工程学会. 节能与新能源汽车技术路线图2.0 [M]. 北京: 机械工业出版社, 2020.
|
[6] |
国家智能网联汽车创新中心. 智能网联汽车技术路线图2.0 [R]. 北京: 国家智能网联汽车创新中心, 2020.
|
[7] |
李克强, 李家文, 常雪阳, 等. 智能网联汽车云控系统原理及其典型应用 [J]. 汽车安全与节能学报, 2020, 11(3): 261‒275.
|
[8] |
陈哲. 能源行业 吹响变革号角 [J]. 成才与就业, 2023 (10): 14‒15.
|
[9] |
寇凌峰, 张颖, 季宇, 等. 分布式储能的典型应用场景及运营模式分析 [J]. 电力系统保护与控制, 2020, 48(4): 177‒187.
|
[10] |
吴晓海. 电动汽车充电基础设施规划研究 [J]. 智能建筑电气技术, 2021, 15(5): 49‒54, 57.
|
[11] |
谢小荣, 马宁嘉, 刘威, 等. 新型电力系统中储能应用功能的综述与展望 [J]. 中国电机工程学报, 2023, 43(1): 158‒169.
|
[12] |
董治新, 韩雅萱, 杨丽, 等. “源 ‒ 网 ‒ 荷 ‒ 储”互动下适应多元主体需求的灵活性交易机制研究 [J/OL]. 现代电力: 1‒10[2024-01-13]. https://doi.org/10.19725/j.cnki.1007 -2322.2022.0289.
|
[13] |
中国汽车工业协会. 2023中国汽车工业产销报告 [R]. 北京: 中国汽车工业协会, 2024.
|
[14] |
王志远. "车能路云"融合发展: 汽车产业的"中国方案" [N]. 中国青年报, 2023-09-07(11).
|
[15] |
温昕. 高通李俨: 利用C-V2X技术改善未来交通环境 [J]. 智能网联汽车, 2023 (6): 40‒42.
|
[16] |
靳欣欣. C-V2X的意义、关键技术及通信技术发展趋势分析 [J]. 互联网天地, 2020 (8): 25‒34.
|
[17] |
创新成果日新月异 汽车"下半场"谁能胜出? [J]. 智能网联汽车, 2023 (4): 83‒85.
|
[18] |
Duan J F, Yu S, Tan H L, et al. A survey of embodied AI: From simulators to research tasks [J]. IEEE Transactions on Emerging Topics in Computational Intelligence, 2022, 6(2): 230‒244.
|
[19] |
Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need [C]. Long Beach: The 31st International Conference on Neural Information Processing Systems, 2017.
|
[20] |
Liu Z, Lin Y T, Cao Y, et al. Swin transformer: Hierarchical vision transformer using shifted windows [C]. Montreal: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), 2021.
|
[21] |
Hu Y H, Yang J Z, Chen L, et al. Planning-oriented autonomous driving [C]. Vancouver: 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2023.
|
[22] |
挑战与机遇并存"双碳": 目标引领汽车产业变革 [J]. 大社会, 2021 (10): 10‒11.
|
[23] |
王震坡, 黎小慧, 孙逢春. 产业融合背景下的新能源汽车技术发展趋势 [J]. 北京理工大学学报, 2020, 40(1): 1‒10.
|
[24] |
胡江溢, 杨高峰, 宋兆欧, 等. 支持新型储能发展的国际政策与中国发展模式探讨 [J/OL]. 电网技术: 1‒11[2024-01-13]. https://doi.org/10.13335/j.1000-3673.pst.2023.1577.
|
[25] |
孙小程. "车能路云"融合发展成大势所趋 [N]. 上海证券报, 2023-09-02(05).
|
[26] |
李克强, 戴一凡, 李升波, 等. 智能网联汽车(ICV)技术的发展现状及趋势 [J]. 汽车安全与节能学报, 2017, 8(1): 1‒14.
|
[27] |
李克强. 我看智能网联汽车十年发展 [J]. 智能网联汽车, 2022 (3): 6‒9.
|
[28] |
温昕. 协力推动汽车芯片高质量发展 [J]. 智能网联汽车, 2023 (4): 49‒51.
|
[29] |
Kempton W, Tomić J. Vehicle-to-grid power fundamentals: Calculating capacity and net revenue [J]. Journal of Power Sources, 2005, 144(1): 268‒279.
|
[30] |
国家电网公司营销部. 电动汽车智能充换电服务网络建设与运营 [M]. 北京: 中国电力出版社, 2013.
|
[31] |
刘栋晨, 季昱, 胡岳. 交能融合V2G技术研究与实践综述 [J/OL]. 上海交通大学学报, 2023: 1‒25[2023-11-06]. https://kns.cnki.net/kcms/detail/31.1466.U.20231103.1552.004.html.
|
[32] |
宁剑, 江长明, 张哲, 等. 可调节负荷资源参与电网调控的思考与技术实践 [J]. 电力系统自动化, 2020, 44(17): 1‒8.
|
[33] |
田立亭, 程林, 郭剑波, 等. 虚拟电厂对分布式能源的管理和互动机制研究综述 [J]. 电网技术, 2020, 44(6): 2097‒2108.
|
[34] |
赵轩, 张元星, 李斌, 等. 国内外车网互动试点成效分析与发展建议 [J]. 电力自动化设备, 2022, 42(10): 280‒292.
|
[35] |
张亚勤, 李震宇, 尚国斌, 等. 面向自动驾驶的车路云一体化框架 [J]. 汽车安全与节能学报, 2023, 14(3): 249‒273.
|
[36] |
傅志寰, 翁孟勇, 张晓璇, 等. 我国智慧公路发展战略研究 [J]. 中国工程科学, 2023, 25(6): 150‒159.
|
[37] |
中国公路学会. 中国智慧公路发展报告(2022) [R]. 北京: 中国公路学会, 2023.
|
[38] |
韩鑫. 我国公路总里程10年增长112万公里 [N]. 人民日报, 2023-11-24(10).
|
[39] |
王鹤. 车路协同助力自动驾驶 [N]. 经济参考报, 2022-11-04(07).
|
[40] |
李克强, 常雪阳, 李家文, 等. 智能网联汽车云控系统及其实现 [J]. 汽车工程, 2020, 42(12): 1595‒1605.
|
[41] |
丁飞, 张楠, 李升波, 等. 智能网联车路云协同系统架构与关键技术研究综述 [J]. 自动化学报, 2022, 48(12): 2863‒2885.
|
[42] |
吕红星. 顶层设计跟进新能源汽车迎来重大利好 [N]. 中国经济时报, 2023-06-05(01).
|
[43] |
马艳. “缺芯贵电”成痛点新能源汽车产业链抗风险能力仍不足 [N]. 中国工业报, 2022-11-25(A4).
|
[44] |
周时莹, 梁贵友, 王德平, 等. 智能网联汽车操作系统发展趋势及国产化生态建设 [J]. 汽车技术, 2023 (11): 1‒7.
|
[45] |
汪志鸿, 于德营, 马天泽, 等. 车用操作系统技术现状及发展趋势 [J]. 汽车工程, 2023, 45(6): 910‒921.
|
[46] |
高驰. 把脉中国汽车产业发展方向 [J]. 汽车与配件, 2023 (22): 46‒47.
|
[47] |
程翔, 张浩天, 杨宗辉, 等. 车联网通信感知一体化研究: 现状与发展趋势 [J]. 通信学报, 2022, 43(8): 188‒202.
|
[48] |
邢佳韵, 陈其慎, 张艳飞, 等. 我国锂及其下游动力电池产业链发展探讨 [J]. 中国工程科学, 2022, 24(3): 10‒19.
|
[49] |
魏一凡, 韩雪冰, 卢兰光, 等. 面向碳中和的新能源汽车与车网互动技术展望 [J]. 汽车工程, 2022, 44(4): 444, 449‒464.
|
[50] |
唐诗华. 智能网联汽车发展政策与标准体系探究 [J]. 质量与认证, 2023 (10): 41‒43.
|
[51] |
曾少旭, 黄欣, 吴冬升. 车联网产业标准发展态势挑战和建议 [J]. 智能网联汽车, 2023 (5): 40‒43.
|
[52] |
张佩, 颜伏伍, 侯献军, 等. 面向产业变革的新能源汽车人才培养模式改革 [J]. 武汉理工大学学报(信息与管理工程版), 2022, 44(4): 669‒673.
|
[53] |
王辉. 新能源汽车产业背景下的车辆工程专业人才培养变革 [J]. 时代汽车, 2022 (3): 32‒33.
|
[54] |
唐小军, 章立辉, 兰凤民. 以京雄、延崇高速公路为例谈智慧高速公路的发展对策 [J]. 公路, 2022, 67(4): 250‒255.
|
/
〈 | 〉 |