Strategic Study of Chinese Academy of Engineering >
Construction of Near-Zero-Carbon Manufacturing System under the Carbon Border Adjustment Mechanism
Received date: 30 Aug 2023
Published date: 22 May 2024
The carbon peaking and carbon neutralization goals as well as the carbon trading system reforms of the European Union (EU) necessitate the synergy of energy conservation, pollution control, and carbon reduction in China to achieve low- and zero-carbon transformation of its manufacturing industry. This study focuses on the impact of the EU Carbon Border Adjustment Mechanism on China’s manufacturing industry, clarifies the concept of a near-zero-carbon manufacturing system, and elaborates on its core content from the major dimensions of key technologies, measurement basis, and market driving force. It also proposes the technical development directions of the near-zero-carbon manufacturing system from the aspects of product manufacturing and power supply and suggests the establishment of a source-grid-load carbon measurement system to clarify carbon emission responsibilities. Moreover, the future development path for China’s carbon market is explored after reviewing the carbon markets both in China and abroad. The practical solutions proposed by the study is expected to provide a basic reference for promoting the high-quality development and low-carbon transformation of China’s manufacturing industry.
Runting Cheng , Yongjun Zhang , Licheng Li , Maosheng Ding , Jingchun Lin , Chunfeng Zhang , Yongxia Han . Construction of Near-Zero-Carbon Manufacturing System under the Carbon Border Adjustment Mechanism[J]. Strategic Study of Chinese Academy of Engineering, 2024 , 26(1) : 68 -79 . DOI: 10.15302/J-SSCAE-2023.07.037
[1] |
乔岳. 碳中和目标下中国制造业绿色发展之路 [J]. 人民论坛·学术前沿, 2023 (5): 59‒70.
|
[2] |
袁学良, 杨月, 盛雪柔, 等. 碳达峰碳中和政策解析与对策建议 [J]. 山东大学学报 (工学版), 2023, 53(5): 132‒141.
|
[3] |
The long-term strategy of the United States: Pathways to net-zero green-house gas emissions by 2050 [EB/OL]. (2021-10-30)[2023-10-15]. https://www.whitehouse.gov/wp-content/uploads/2021/10/US-Long-Term-Strategy.pdf?itid=lk_inline_enhanced-template.
|
[4] |
魏寒冰. 《2050年前俄罗斯联邦长期温室气体低排放发展战略》草案(节选)翻译实践报告 [D]. 乌鲁木齐: 新疆师范大学 (硕士学位论文), 2022.
|
[5] |
刘璐, 胡学平, 王怀, 等. 国际碳排放相关主要标准及文件体系概述 [J]. 绿色矿冶, 2023, 39(1): 8‒16, 52.
|
[6] |
Oberthür S. Hard or soft governance? The EU´s climate and energy policy framework for 2030 [J]. Politics and Governance, 2019, 7(1): 17‒27.
|
[7] |
张瑞萍, 贾佳. 欧盟碳边境调节机制对中国—东盟绿色低碳发展的影响及应对 [J]. 国际贸易, 2023 (3): 18‒28.
|
[8] |
2030年前碳达峰行动方案 [EB/OL]. (2021-10-24)[2023-10-15]. https://www.gov.cn/gongbao/content/2021/content_5649731.htm.
|
[9] |
王玉元, 杨志嘉. 服务低碳发展的碳计量典型场景及路径 [J]. 油气储运, 2023, 42(1): 24‒31.
|
[10] |
武汉大学国家发展战略研究院课题组. 推进制造业绿色低碳转型的路径选择 [J]. 中国行政管理, 2023 (1): 149‒152.
|
[11] |
中国社会科学院工业经济研究所课题组. 新型工业化内涵特征、体系构建与实施路径 [J]. 中国工业经济, 2023 (3): 5‒19.
|
[12] |
薛贺香. "双碳" 背景下制造业数字化转型与绿色发展耦合协调研究 [J]. 区域经济评论, 2023 (3): 101‒110.
|
[13] |
刘启雷, 赵威, 苏锦旗, 等. 基于数智化转型的制造业"双碳" 发展: 逻辑、路径与政策 [J]. 科学管理研究, 2023, 41(3): 79‒88.
|
[14] |
张帆, 刘嘉伟. 中国式现代化视域下制造业高质量发展的取向与路径 [J]. 江海学刊, 2023 (2): 109‒116.
|
[15] |
李洪丞, 曹华军, 刘兰微, 等. 碳达峰碳中和背景下低碳制造研究现状与技术路径研究 [J]. 机械工程学报, 2023, 59(7): 225‒240.
|
[16] |
朱松丽, 蔡博峰, 朱建华, 等. IPCC国家温室气体清单指南精细化的主要内容和启示 [J]. 气候变化研究进展, 2018, 14(1): 86‒94.
|
[17] |
屈满学. 欧盟碳边境调节机制及其对我国经济和贸易的影响 [J]. 西北师大学报 (社会科学版), 2023, 60(5): 105‒113.
|
[18] |
孙芳, 荣文钧, 温珺. 碳边境调节机制对中国在欧盟直接投资的影响及对策 [J]. 国际经济合作, 2023 (2): 60‒69, 92.
|
[19] |
李涛, 上官方钦, 郦秀萍, 等. CBAM对中国钢铁行业的影响和应对策略 [J]. 中国冶金, 2023, 33(8): 78‒83, 91.
|
[20] |
高萍, 林菲. 欧盟碳关税影响分析及应对建议 [J]. 税务研究, 2022 (7): 92‒98.
|
[21] |
庞军, 常原华. 欧盟碳边境调节机制对我国的影响及应对策略 [J]. 可持续发展经济导刊, 2023 (1): 32‒35.
|
[22] |
汪惠青, 王有鑫. 欧盟碳边境调节机制的外溢影响与我国的应对措施 [J]. 金融理论与实践, 2022 (8): 111‒118.
|
[23] |
李新宇, 李昭甫, 高亮. 离散制造行业数字化转型与智能化升级路径研究 [J]. 中国工程科学, 2022, 24(2): 64‒74.
|
[24] |
Wang C, Sun R S, Zhang J T. Supportive technologies and roadmap for China´s carbon neutrality [J]. China Economist, 2021, 16(5): 32‒70.
|
[25] |
张毅, 李文强, 李彦, 等. 基于碳足迹信息模型的产品低碳创新设计 [J]. 工程设计学报, 2017, 24(2): 141‒148.
|
[26] |
He B, Zhang D, Gu Z C, et al. Skeleton model-based product low carbon design optimization [J]. Journal of Cleaner Production, 2020, 264: 121687.
|
[27] |
He B, Yu Q Y. Product sustainable design for carbon footprint during product life cycle [J]. Journal of Engineering Design, 2021, 32(9): 478‒495.
|
[28] |
Zhang X F, Zhang S Y, Hu Z Y, et al. Identification of connection units with high GHG emissions for low-carbon product structure design [J]. Journal of Cleaner Production, 2012, 27: 118‒125.
|
[29] |
彭鑫. 基于碳足迹特征的机电产品方案设计建模及碳足迹评价研究 [D]. 济南: 山东大学 (硕士学位论文), 2019.
|
[30] |
Ning T, Wang Z, Zhang P, et al. Integrated optimization of disruption management and scheduling for reducing carbon emission in manufacturing [J]. Journal of Cleaner Production, 2020, 263: 121449.
|
[31] |
Ning T, Huang Y M. Low carbon emission management for flexible job shop scheduling: A study case in China [J]. Journal of Ambient Intelligence and Humanized Computing, 2023, 14(2): 789‒805.
|
[32] |
Yi Q, Li C B, Zhang X L, et al. An optimization model of machining process route for low carbon manufacturing [J]. The International Journal of Advanced Manufacturing Technology, 2015, 80(5): 1181‒1196.
|
[33] |
Li H C, Yang H D, Cao H J, et al. State space modelling carbon emission dynamics of machining workshop based on carbon efficiency [J]. International Journal of Computer Integrated Manufacturing, 2018, 31(4/5): 426‒441.
|
[34] |
Li H C, Cao H J. An optimization model for carbon efficiency of a job-shop manufacturing system [J]. Procedia CIRP, 2015, 28: 113‒118.
|
[35] |
Chen E H, Cao H J, He Q Y, et al. An IoT based framework for energy monitoring and analysis of die casting workshop [J]. Procedia CIRP, 2019, 80: 693‒698.
|
[36] |
Chen X Z, Li C B, Tang Y, et al. An Internet of Things based energy efficiency monitoring and management system for machining workshop [J]. Journal of Cleaner Production, 2018, 199: 957‒968.
|
[37] |
Liu G W, Chen R D, Xu P P, et al. Real-time carbon emission monitoring in prefabricated construction [J]. Automation in Construction, 2020, 110: 102945.
|
[38] |
Shamsuzzaman M, Shamsuzzoha A, Maged A, et al. Effective monitoring of carbon emissions from industrial sector using statistical process control [J]. Applied Energy, 2021, 300: 117352.
|
[39] |
阳平坚, 彭栓, 王静, 等. 碳捕集、利用和封存(CCUS)技术发展现状及应用展望 [J/OL]. 中国环境科学, [2023-09-27]. https://doi.org/10.19674/j.cnki.issn1000-6923.20230815.001.
|
[40] |
Dinca C, Slavu N, Cormoş C C, et al. CO2 capture from syngas generated by a biomass gasification power plant with chemical absorption process [J]. Energy, 2018, 149: 925‒936.
|
[41] |
Xu P L, Li J, Qian J, et al. Recent advances in CO2 fixation by microalgae and its potential contribution to carbon neutrality [J]. Chemosphere, 2023, 319: 137987.
|
[42] |
李胜. "双碳"目标下能源企业碳绩效管理体系构建研究 [J]. 财务与会计, 2023 (4): 43‒47.
|
[43] |
何姣, 叶泽. 电力行业碳成本传导的基本原理及均衡模型 [J]. 生态经济, 2019, 35(9): 45‒49.
|
[44] |
赵玉荣, 刘含眸, 李伟, 等. "双碳"目标下我国电力部门低碳转型政策研究 [J]. 气候变化研究进展, 2023, 19(5): 634‒644.
|
[45] |
张智刚, 康重庆. 碳中和目标下构建新型电力系统的挑战与展望 [J]. 中国电机工程学报, 2022, 42(8): 2806‒2819.
|
[46] |
李立浧, 张勇军, 陈泽兴, 等. 智能电网与能源网融合的模式及其发展前景 [J]. 电力系统自动化, 2016, 40(11): 1‒9.
|
[47] |
张勇军, 羿应棋, 李立浧, 等. 双碳目标驱动的新型低压配电系统技术展望 [J]. 电力系统自动化, 2022, 46(22): 1‒12.
|
[48] |
魏一鸣, 韩融, 余碧莹, 等. 全球能源系统转型趋势与低碳转型路径——来自于IPCC第六次评估报告的证据 [J]. 北京理工大学学报 (社会科学版), 2022, 24(4): 163‒188.
|
[49] |
刘昱良, 李姚旺, 周春雷, 等. 电力系统碳排放计量与分析方法综述 [J/OL]. 中国电机工程学报, [2023-06-27]. https://doi.org/10.13334/j.0258-8013.pcsee.223452.
|
[50] |
Tuo J B, Liu P J, Liu F. Dynamic acquisition and real-time distribution of carbon emission for machining through mining energy data [J]. IEEE Access, 2019, 7: 78963‒78975.
|
[51] |
张宁, 李姚旺, 黄俊辉, 等. 电力系统全环节碳计量方法与碳表系统 [J]. 电力系统自动化, 2023, 47(9): 2‒12.
|
[52] |
招景明, 李经儒, 潘峰, 等. 电力碳排放计量技术现状及展望 [J]. 电测与仪表, 2023, 60(3): 1‒8.
|
[53] |
Carbon flows: The emissions omitted: The usual figures ignore the role of trade in the world´s carbon economy [EB/OL]. [2022-08-12]. https://www.nature.com/articles/srep00479.
|
[54] |
李瑶虹, 卢德龙, 吴阳. 双碳背景下用户侧碳计量装置及平台的研发与应用 [J]. 电力需求侧管理, 2023, 25(3): 67‒73.
|
[55] |
李业辉, 包维瀚, 周特, 等. 基于碳排放流迭代算法的分布式碳表系统(二): 系统设计与验证 [J]. 电网技术, 2023, 47(7): 2682‒2695.
|
[56] |
李业辉, 李姚旺, 刘昱良, 等. 基于碳排放流迭代算法的分布式碳表系统(一): 理论方法与分析 [J]. 电网技术, 2023, 47(6): 2165‒2174.
|
[57] |
Adediran I A, Swaray R. Carbon trading amidst global uncertainty: The role of policy and geopolitical uncertainty [J]. Economic Modelling, 2023, 123: 106279.
|
[58] |
Song M L, Zheng H Y, Shen Z Y. Whether the carbon emissions trading system improves energy efficiency—Empirical testing based on China´s provincial panel data [J]. Energy, 2023, 275: 127465.
|
[59] |
Bel G, Joseph S. Policy stringency under the European Union Emission trading system and its impact on technological change in the energy sector [J]. Energy Policy, 2018, 117: 434‒444.
|
[60] |
Zhang Y J, Shi W. Has China´s carbon emissions trading (CET) policy improved green investment in carbon-intensive enterprises? [J]. Computers & Industrial Engineering, 2023, 180: 109240.
|
[61] |
成润婷, 张勇军, 李立浧, 等. 面向高比例可再生能源消纳的电力市场建设及研究进展 [J]. 中国工程科学, 2023, 25(2): 89‒99.
|
[62] |
黄绍军. "双碳"目标下我国碳排放权市场交易制度优化路径研究 [J]. 西南金融, 2023 (6): 30‒41.
|
[63] |
Jiang J J, Xie D J, Ye B, et al. Research on China´s cap-and-trade carbon emission trading scheme: Overview and outlook [J]. Applied Energy, 2016, 178: 902‒917.
|
[64] |
王文举, 赵艳. 全球碳市场研究及对中国碳市场建设的启示 [J]. 东北亚论坛, 2019, 28(2): 97‒112, 128.
|
[65] |
Shi B B, Li N, Gao Q, et al. Market incentives, carbon quota allocation and carbon emission reduction: Evidence from China´s carbon trading pilot policy [J]. Journal of Environmental Management, 2022, 319: 115650.
|
[66] |
Lin W B, Gu A L, Wang X, et al. Aligning emissions trading and feed-in tariffs in China [J]. Climate Policy, 2016, 16(4): 434‒455.
|
/
〈 | 〉 |