Strategic Study of Chinese Academy of Engineering >
Philosophical Epistemological Study of Human–Machine Collaborative Technology in Intelligent Manufacturing
Received date: 29 Nov 2023
Published date: 22 May 2024
Intelligent manufacturing is a systematic engineering and technological innovation that propels the transformation and upgrading of China’s manufacturing industry, enhancing industrial competitiveness. It is a pivotal element in strengthening the manufacturing sector of China. The comprehensive and profound advancement of intelligent manufacturing necessitates adherence to ideological innovation, requiring the formulation of a scientifically grounded development strategy from its philosophical roots. This paper, based on the phenomenological reductionism and ontological perspective method, starts from the perspective of the philosophy of technology, integrates systemic dialectical logical reasoning, investigates and identifies the “hard problems” of human– machine collaborative technology in intelligent manufacturing, and insightfully explores its philosophical essence from the standpoint of the philosophy of scientific epistemology. The research findings indicate that explicit knowledge and tacit knowledge are commonly present in manufacturing technology activities. However, the long-standing technological development has overlooked the significance of tacit knowledge and has made an unreasonable assumption about the existence of “rational people” in human subjects, neglecting their crucial role in manufacturing systems. Therefore, this paper, through ontological reflection, proposes a Cartesian intelligent manufacturing technology development path based on the Internet of Things, Internet of Contents & Knowledge, and Internet of Bodies. Building upon this foundation, it establishes a Heideggerian intelligent manufacturing system architecture grounded in behavior-oriented, deictic representations, and embodied embedding. Through this traceable causal analysis, it constructs a three-stage progressive development knowledge paradigm for resolving the “hard problems” of human – machine collaborative technology. This paradigm is characterized by data-driven, functional representation, and embodied integration. To efficiently promote the development of the new-generation intelligent manufacturing, a knowledge engineering classification assessment system can be established. The application of theoretical cognitive models can drive the resolution of technological challenges and the formulation of industry support policies. Establishing a multi-faceted application-oriented intelligent manufacturing public service platform strengthens knowledge circulation and integrated application.
Haoxiang Qu , Jiang Xu , Shouqian Sun . Philosophical Epistemological Study of Human–Machine Collaborative Technology in Intelligent Manufacturing[J]. Strategic Study of Chinese Academy of Engineering, 2024 , 26(1) : 225 -238 . DOI: 10.15302/J-SSCAE-2024.01.019
[1] |
薛塬, 臧冀原, 孔德婧, 等. 面向智能制造的产业模式演变与创新应用 [J]. 机械工程学报, 2022, 58(18): 303‒318.
|
[2] |
姚锡凡, 景轩, 张剑铭, 等. 走向新工业革命的智能制造 [J]. 计算机集成制造系统, 2020, 26(9): 2299‒2320.
|
[3] |
王燕鹏, 王学昭, 陈小莉, 等. 基于科技政策和前沿动态的第四次工业革命关键技术和举措分析 [J]. 情报学报, 2022, 41(1): 29‒37.
|
[4] |
胡成飞, 姜勇, 张旋. 面向中国制造2050的实施路线 [M]. 北京: 机械工业出版社, 2017.
|
[5] |
李培根. 中国制造2025: "智"造蜕变 [J]. 企业研究, 2015 (8): 10‒11.
|
[6] |
Zhou J, Zhou Y H, Wang B C, et al. Human–cyber–physical systems (HCPSs) in the context of new-generation intelligent manufacturing [J]. Engineering, 2019, 5(4): 71‒97.
|
[7] |
周济. 智能制造——"中国制造2025" 的主攻方向 [J]. 中国机械工程, 2015, 26(17): 2273‒2284.
|
[8] |
路甬祥. 走向绿色和智能制造——中国制造发展之路 [J]. 中国机械工程, 2010, 21(4): 379‒386, 399.
|
[9] |
臧冀原, 刘宇飞, 王柏村, 等. 面向2035的智能制造技术预见和路线图研究 [J]. 机械工程学报, 2022, 58(4): 285‒308.
|
[10] |
谭建荣, 刘达新, 刘振宇, 等. 从数字制造到智能制造的关键技术途径研究 [J]. 中国工程科学, 2017, 19(3): 39‒44.
|
[11] |
谭建荣. 智能制造与机器人应用关键技术与发展趋势 [J]. 机器人技术与应用, 2017 (3): 18‒19.
|
[12] |
Hatvany J, Nemes L. Intelligent manufacturing systems—A tentative forecast [J]. IFAC Proceedings Volumes, 1978, 11(1): 895‒899.
|
[13] |
Schirner G, Erdogmus D, Chowdhury K, et al. The future of human-in-the-loop cyber-physical systems [J]. Computer, 2013, 46(1): 36‒45.
|
[14] |
Wan J F, Yan H H, Liu Q, et al. Enabling cyber-physical systems with machine-to-machine technologies [J]. International Journal of Ad Hoc and Ubiquitous Computing, 2013, 13(3/4): 187‒196.
|
[15] |
"新一代人工智能引领下的智能制造研究"课题组. 中国智能制造的发展路径 [J]. 中国经济报告, 2019 (2): 36‒43.
|
[16] |
Zhou J, Li P G, Zhou Y H, et al. Toward new-generation intelligent manufacturing [J]. Engineering, 2018, 4(1): 28‒47.
|
[17] |
Zheng N N, Liu Z Y, Ren P J, et al. Hybrid-augmented intelligence: Collaboration and cognition [J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(2): 153‒179.
|
[18] |
Nardo M, Forino D, Murino T. The evolution of man–machine interaction: The role of human in Industry 4.0 paradigm [J]. Production & Manufacturing Research, 2020, 8(1): 20‒34.
|
[19] |
姚锡凡, 黄宇, 黄岩松, 等. 自主智能制造: 社会 – 信息 – 物理交互、参考体系架构与运作机制 [J]. 计算机集成制造系统, 2022, 28(2): 325‒338.
|
[20] |
Wahlberg L. Stanford encyclopedia of philosophy [EB/OL]. [2023-11-15]. https: //plato.stanford.edu/.
|
[21] |
Merleau-Ponty M. Phenomenology of perception [M]. London: Routledge, 2002.
|
[22] |
Thelen E, Schöner G, Scheier C, et al. The dynamics of embodiment: A field theory of infant perseverative reaching [J]. The Behavioral and Brain Sciences, 2001, 24(1): 1‒34.
|
[23] |
Bergson H, Landes D, Grosz E. Creative evolution [M]. London: Routledge, 2022.
|
[24] |
邓波, 韩茜, 罗丽. 试论工程知识论的研究"新范式"——一种现象学的知识论研究纲领 [J]. 自然辩证法研究, 2021, 37(2): 44‒50.
|
[25] |
Meijers A. Philosophy of technology and engineering sciences [M]. Amsterdam: Elsevier, 2009.
|
[26] |
Smith A, Rogers J E T. An inquiry into the nature and causes of the wealth of nations [M]. Oxford: Clarendon Press, 1869.
|
[27] |
Simon H A. Bounded rationality [M]. London: Palgrave Macmillan UK, 1990.
|
[28] |
Simon H A. The new science of management decision [M]. Upper Saddle River: Prentice Hall PTR, 1960.
|
[29] |
王柏村, 薛塬, 延建林, 等. 以人为本的智能制造: 理念、技术与应用 [J]. 中国工程科学, 2020, 22(4): 139‒146.
|
[30] |
王柏村, 彭晨, 易兵, 等. 智能时代的人机共融体: 技术驱动、以人为本——《The Humachine: Humankind, Machines, and the Future of Enterprise》导读 [J]. 中国机械工程, 2021, 32(19): 2390‒2393.
|
[31] |
Polanyi M. The study of man (Routledge revivals): The Lindsay memorial lectures 1958 [M]. London: Routledge, 2013.
|
[32] |
Polanyi M. Personal knowledge [M]. London: Routledge, 2012.
|
[33] |
Polanyi M. The logic of tacit inference [J]. Philosophy, 1966, 41(155): 1‒18.
|
[34] |
Polanyi M. Ii.—Knowing and being [J]. Mind, 1961 (280): 458‒470.
|
[35] |
Searle J. Chinese room argument [J]. Scholarpedia, 2009, 4(8): 3100.
|
[36] |
谭建荣, 刘振宇, 徐敬华. 新一代人工智能引领下的智能产品与装备 [J]. 中国工程科学, 2018, 20(4): 35‒43.
|
[37] |
Newell A, Simon H A. Computer science as empirical inquiry: Symbols and search [J]. Communications of the ACM, 1976, 19(3): 113‒126.
|
[38] |
Clark D D, Partridge C, Ramming J C, et al. A knowledge plane for the Internet [C]. Karlsruhe: Proceedings of the 2003 Conference on Applications, Technologies, Architectures, and Protocols for Computer Communications, 2003.
|
[39] |
Dreyfus H L. What computers still can´t do: A critique of artificial reason [M]. Cambridge: MIT Press, 1992.
|
[40] |
McCarthy J, Hayes P J. Some philosophical problems from the standpoint of artificial intelligence [EB/OL]. (1969-05-01)[2023-11-15]. http: //www-formal.stanford.edu/jmc/mcchay69.pdf.
|
[41] |
Dreyfus H L. Why Heideggerian AI failed and how fixing it would require making it more Heideggerian [J]. Artificial Intelligence, 2007, 171(18): 1137‒1160.
|
[42] |
朱清华. 德雷福斯与海德格尔式人工智能 [J]. 哲学动态, 2020 (10): 72‒79, 128.
|
[43] |
Wheeler M. Reconstructing the cognitive world: The next step [M]. Cambridge: MIT Press, 2005.
|
[44] |
Dreyfus S E. The five-stage model of adult skill acquisition [J]. Bulletin of Science, Technology & Society, 2004, 24(3): 177‒181.
|
[45] |
Nishiguchi T, Nonaka I. Knowledge emergence: Social, technical, and evolutionary dimensions of knowledge creation [M]. Oxford: Oxford University Press, 2001.
|
[46] |
Morey D, Maybury M T, Thuraisingham B. Knowledge management: Classic and contemporary works [M]. Cambridge: MIT Press, 2002.
|
[47] |
Nonaka I, Toyama R. The knowledge-creating theory revisited: Knowledge creation as a synthesizing process [J]. Knowledge Management Research & Practice, 2003, 1(1): 2‒10.
|
/
〈 | 〉 |