期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《机械工程前沿(英文)》 >> 2015年 第10卷 第4期 doi: 10.1007/s11465-015-0357-7

The stress relaxation of cement clinkers under high temperature

1. College of Science, Beijing University of Civil Engineering and Architecture, Beijing 100044, China.

2. State Key Laboratory of Green Building Materials, China Building Materials Academy, Beijing 100024, China

录用日期: 2015-10-30 发布日期: 2015-12-03

下一篇 上一篇

摘要

The energy consumption of crushing is directly affected by the mechanical properties of cement materials. This research provides a theoretical proof for the mechanism of the stress relaxation of cement clinkers under high temperature. Compression stress relaxation under various high temperatures is discussed using a specially developed load cell, which can measure stress and displacement under high temperatures inside an autoclave. The cell shows that stress relaxation dramatically increases and that the remaining stress rapidly decreases with an increase in temperature. Mechanical experiments are conducted under various temperatures during the cooling process to study the changes in the grinding resistance of the cement clinker with temperature. The effects of high temperature on the load-displacement curve, compressive strength, and elastic modulus of cement clinkers are systematically studied. Results show that the hardening phenomenon of the clinker becomes apparent with a decrease in temperature and that post-peak behaviors manifest characteristics of the transformation from plasticity to brittleness. The elastic modulus and compressive strength of cement clinkers increase with a decrease in temperature. The elastic modulus increases greatly when the temperature is lower than 1000 °C. The compressive strength of clinkers increases by 73.4% when the temperature drops from 1100 to 800 °C.

相关研究