期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《机械工程前沿(英文)》 >> 2020年 第15卷 第4期 doi: 10.1007/s11465-020-0601-7

Chord error constraint based integrated control strategy for contour error compensation

School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510641, China

收稿日期: 2020-09-14 录用日期: 2020-10-29 发布日期: 2020-10-29

下一篇 上一篇

摘要

As the traditional cross-coupling control method cannot meet the requirements for tracking accuracy and contour control accuracy in large curvature positions, an integrated control strategy of cross-coupling contour error compensation based on chord error constraint, which consists of a cross-coupling controller and an improved position error compensator, is proposed. To reduce the contour error, a PI-type cross-coupling controller is designed, with its stability being analyzed by using the contour error transfer function. Moreover, a feed rate regulator based on the chord error constraint is proposed, which performs speed planning with the maximum feed rate allowed by the large curvature position as the constraint condition, so as to meet the requirements of large curvature positions for the chord error. Besides, an improved position error compensation method is further presented by combining the feed rate regulator with the position error compensator, which improves the tracking accuracy via the advance compensation of tracking error. The biaxial experimental results of non-uniform rational B-splines curves indicate that the proposed integrated control strategy can significantly improve the tracking and contour control accuracy in biaxial contour following tasks.

相关研究