期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《化学科学与工程前沿(英文)》 >> 2013年 第7卷 第4期 doi: 10.1007/s11705-013-1370-1

Simulation on thermodynamic state of ammonia carbonation at low temperature and low pressure

National Engineering Research Center for Integrated Utilization of Salt Lake Resource, East China University of Science and Technology, Shanghai 200237, China

发布日期: 2013-12-05

下一篇 上一篇

摘要

This study on thermodynamic property of NH -CO -H O system provided the basic data for ammonia carbonation. Simulations on vapor-liquid equilibrium (VLE) of ammonia carbonation with different physical properties were discussed in NH -H O and NH -CO -H O systems, respectively. The results indicated that at low temperature (303.15 K–363.15 K) and pressure (0.1–0.4 MPa), the PR (Peng-Robinson) equation was suitable for the description of the thermodynamic state in NH -H O system. NRTL (Non-Random-Two-Liquid) series models were selected for NH -CO -H O mixed electrolyte solution system. VLE data regression results showed that NRTL series models were suitable for describing thermodynamic properties of NH -CO -H O system, because average relative error fitting with each model was about 1%. As an asymmetric electrolytes model in NRTL model, E–NRTLRK (Electrolyte NRTL Redlich Kwong) could most accurately fit VLE data of NH -CO -H O system, with fitting error less than 1%. In the extent temperature range of 273.15 K–363.15 K, the prediction of product component using E-NRTLRK model for ammonia carbonation agreed well with the data reported in literature.

相关研究