期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《化学科学与工程前沿(英文)》 >> 2021年 第15卷 第4期 doi: 10.1007/s11705-020-1999-5

Efficient base-free oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid over copper-doped manganese oxide nanorods with

National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China

收稿日期: 2020-11-20 录用日期: 2021-01-08 发布日期: 2021-01-08

下一篇 上一篇

摘要

2,5-Furandicarboxylic acid (FDCA) is an important and renewable building block and can serve as an alternative to terephthalic acid in the production of bio-based degradable plastic. In this study, Cu-doped MnO  nanorods were prepared by a facile hydrothermal redox method and employed as catalysts for the selective oxidation of 5-hydroxymethylfurfural (HMF) to FDCA using -butyl hydroperoxide (TBHP) as an oxidant. The catalysts were characterized using X-ray diffraction analysis, Fourier transform infrared spectroscopy, thermogravimetric analysis, and transmission electron microscopy. The effects of oxidants, solvents, and reaction conditions on the oxidation of HMF were investigated, and a reaction mechanism was proposed. Experimental results demonstrated that 99.4% conversion of HMF and 96.3% selectivity of FDCA were obtained under suitable conditions, and -butanol was the most suitable solvent when TBHP was used as an oxidant. More importantly, the Cu-doped MnO catalyst can maintain durable catalytic activity after being recycled for more than ten times.

相关研究