期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《化学科学与工程前沿(英文)》 >> 2024年 第18卷 第3期 doi: 10.1007/s11705-024-2392-6

Self-supported copper-based gas diffusion electrodes improve the local CO concentration for efficient electrochemical CO reduction

发布日期: 0000-00-00

下一篇 上一篇

摘要

Electrochemical CO2 reduction is a sustainable approach in green chemistry that enables the production of valuable chemicals and fuels while mitigating the environmental impact associated with CO2 emissions. Despite its several advantages, this technology suffers from an intrinsically low CO2 solubility in aqueous solutions, resulting in a lower local CO2 concentration near the electrode, which yields lower current densities and restricts product selectivity. Gas diffusion electrodes (GDEs), particularly those with tubular architectures, can solve these issues by increasing the local CO2 concentration and triple-phase interface, providing abundant electroactive sites to achieve superior reaction rates. In this study, robust and self-supported Cu flow-through gas diffusion electrodes (FTGDEs) were synthesized for efficient formate production via electrochemical CO2 reduction. They were further compared with traditional Cu electrodes, and it was found that higher local CO2 concentration due to improved mass transfer, the abundant surface area available for the generation of the triple-phase interface, and the porous structure of Cu FTGDEs enabled high formate Faradaic efficiency (76%) and current density (265 mA·cm–2) at –0.9 V vs. reversible hydrogen electrode (RHE) in 0.5 mol·L–1 KHCO3. The combined phase inversion and calcination process of the Cu FTGDEs helped maintain a stable operation for several hours. The catalytic performance of the Cu FTGDEs was further investigated in a non-gas diffusion configuration to demonstrate the impact of local gas concentration on the activity and performance of electrochemical CO2 reduction. This study demonstrates the potential of flow-through gas-diffusion electrodes to enhance reaction kinetics for the highly efficient and selective reduction of CO2, offering promising applications in sustainable electrochemical processes.

相关研究