期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《结构与土木工程前沿(英文)》 >> 2020年 第14卷 第3期 doi: 10.1007/s11709-020-0584-9

Finite element modeling of thermo-active diaphragm walls

. Centre for Smart Infrastructure and Construction, Department of Engineering, University of Cambridge, Cambridge, CB3 0FA, UK.. Civil and Environmental Engineering Department, Brunel Univisity, London UB8 3PH, UK

收稿日期: 2020-03-11 录用日期: 2020-06-16 发布日期: 2020-06-16

下一篇 上一篇

摘要

There are two major challenges faced by modern society: energy security, and lowering carbon dioxide gas emissions. Thermo-active diaphragm walls have a large potential to remedy one of these problems, since they are a renewable energy technology that uses underground infrastructure as a heat exchange medium. However, extensive research is required to determine the effects of cyclic heating and cooling on their geotechnical and structural performance. In this paper, a series of detailed finite element analyses are carried out to capture the fully coupled thermo-hydro-mechanical response of the ground and diaphragm wall. It is demonstrated that the thermal operation of the diaphragm wall causes changes in soil temperature, thermal expansion/shrinkage of pore water, and total stress applied on the diaphragm wall. These, in turn, cause displacements of the diaphragm wall and variations of the bending moments. However, these effects on the performance of diaphragm wall are not significant. The thermally induced bending strain is mainly governed by the temperature differential and uneven thermal expansion/shrinkage across the wall.

相关研究