期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《结构与土木工程前沿(英文)》 >> 2020年 第14卷 第3期 doi: 10.1007/s11709-020-0625-4

Application of consistent geometric decomposition theorem to dynamic finite element of 3D composite beam based on experimental and numerical analyses

Department of Mechanical Engineering, Isfahan University of Technology, Isfahan 8415683111, Iran

收稿日期: 2020-04-22 录用日期: 2020-06-17 发布日期: 2020-06-17

下一篇 上一篇

摘要

Analyzing static and dynamic problems including composite structures has been of high significance in research efforts and industrial applications. In this article, equivalent single layer approach is utilized for dynamic finite element procedures of 3D composite beam as the building block of numerous composite structures. In this model, both displacement and strain fields are decomposed into cross-sectional and longitudinal components, called consistent geometric decomposition theorem. Then, the model is discretized using finite element procedures. Two local coordinate systems and a global one are defined to decouple mechanical degrees of freedom. Furthermore, from the viewpoint of consistent geometric decomposition theorem, the transformation and element mass matrices for those systems are introduced here for the first time. The same decomposition idea can be used for developing element stiffness matrix. Finally, comprehensive validations are conducted for the theory against experimental and numerical results in two case studies and for various conditions.

相关研究