期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《结构与土木工程前沿(英文)》 >> 2020年 第14卷 第5期 doi: 10.1007/s11709-020-0663-y

Experimental and numerical investigations of the compressive behavior of carbon fiber-reinforced polymer-strengthened tubular steel T-joints

. Shandong Provincial Key Laboratory of Civil Engineering Disaster Prevention and Mitigation, Shandong University of Science and Technology, Qingdao 266590, China.. College of Civil Engineering and Architecture, Shandong University of Science and Technology, Qingdao 266590, China

收稿日期: 2020-08-25 录用日期: 2020-09-18 发布日期: 2020-09-18

下一篇 上一篇

摘要

A method for strengthening damaged tubular steel T-joints under axial compression by wrapping them with carbon fiber-reinforced polymer (CFRP) sheets was proposed and evaluated. The influence of the CFRP strengthening on the failure mode and load capacity of T-joints with different degrees of damage was investigated using experiments and finite element analyses. Five T-joints were physically tested: one bare joint to obtain the peak load and corresponding displacement ( ), two reinforced joints to provide a reference, and two pre-damaged then retrofitted joints to serve as the primary research objects. The ratio of the pre-loaded specimen chord displacement to the value of was considered to be the degree of damage of the two retrofitted joints, and was set to 0.80 and 1.20. The results demonstrate that the maximum capacity of the retrofitted specimen was increased by 0.83%–15.06% over the corresponding unreinforced specimens. However, the capacity of the retrofitted specimen was 2.51%–22.77% lesser compared with that of the directly reinforced specimens. Next, 111 numerical analysis models (0.63≤ ≤0.76, 9.70≤ ≤16.92) were established to parametrically evaluate the effects of different geometric and strengthening parameters on the load capacity of strengthened tubular T-joints under different degrees of damage. The numerical analysis results revealed that the development of equivalent plastic strain at the selected measuring points was moderated by strengthening with CFRP wrapping, and indicated the optimal CFRP strengthening thickness and wrapping orientation according to tubular T-joint parameters. Finally, reasonable equations for calculating the load capacity of CFRP-strengthened joints were proposed and demonstrated to provide accurate results. The findings of this study can be used to inform improved CFRP strengthening of damaged tubular steel structures.

相关研究