期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《环境科学与工程前沿(英文)》 >> 2015年 第9卷 第2期 doi: 10.1007/s11783-014-0626-4

Optimization of thermophilic anaerobic-aerobic treatment system for Palm Oil Mill Effluent (POME)

Department of Chemical and Environmental Engineering, The University of Nottingham Malaysia Campus, Selangor 43500, Malaysia

发布日期: 2015-02-13

下一篇 上一篇

摘要

Optimization of an integrated anaerobic-aerobic bioreactor (IAAB) treatment system for the reduction of organic matter (Chemical Oxygen Demand (COD), Biochemical Oxygen Demand (BOD) and Total Suspended Solids (TSS) concentrations) in Palm Oil Mill Effluent (POME) to legal standards with high methane yield was performed for the first time under thermophilic condition (50°C–55°C) by using response surface methodology (RSM). The experiments were conducted based on a central composite rotatable design (CCRD) with three independent operating variables, organic loading rates in anaerobic compartment (OLR ) and mixed liquor volatile suspended solids (MLVSS) concentration in anaerobic (MLVSS ) and aerobic compartments (MLVSS ). The optimum conditions for the POME treatment were determined as OLR of 15.6 g COD·L ·d , MLVSS of 43100 mg·L , and MLVSS of 18600 mg·L , where high aerobic COD, BOD and TSS removal efficiencies of 96.3%, 97.9%, and 98.5% were achieved with treated BOD of 56 mg·L and TSS of 28 mg·L meeting the discharge standard. This optimization study successfully achieved a reduction of 42% in the BOD concentrations of the final treated effluent at a 48% higher OLR as compared to the previous works. Besides, thermophilic IAAB system scores better feasibility and higher effectiveness as compared to the optimized mesophilic system. This is due to its higher ability to handle high OLR with higher overall treatment efficiencies (more than 99.6%), methane yield (0.31 L CH ·g COD ) and purity of methane (67.5%). Hence, these advantages ascertain the applicability of thermophilic IAAB in the POME treatment or even in other high-strength wastewaters treatment.

相关研究