期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《环境科学与工程前沿(英文)》 >> 2020年 第14卷 第6期 doi: 10.1007/s11783-020-1288-z

Acute toxicity assessment of drinking water source with luminescent bacteria: Impact of environmental conditions and a case study in Luoma Lake, East China

1. College of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
2. State Environmental Protection Key Laboratory of Monitoring and Analysis for Organic Pollutants in Surface Water, Jiangsu Environmental Monitoring Center, Nanjing 210036, China
3. State Key Joint Laboratory of ESPC, School of Environment, Tsinghua University, Beijing 100084, China

发布日期: 2020-07-13

下一篇 上一篇

摘要

Abstract • Acute toxicity assessment was conducted in Luoma lake watershed, East China. • Impacts of environmental factors on the toxicity testing was fully evaluated. • Dissolve oxygen had a weak positive correlation with luminescence inhibition rate. Protecting the quality of lake watersheds by preventing and reducing their contamination is an effective approach to ensure the sustainability of the drinking water supply. In this study, acute toxicity assessment was conducted on the basis of acute bioluminescence inhibition assay using the marine bacterium Vibrio fischeri as the test organism and Luoma Lake drinking water source in East China as the research target. The suitable ranges of environmental factors, including pH value, organic matter, turbidity, hardness, and dissolved oxygen of water samples were evaluated for the toxicity testing of bioluminescent bacteria. The physicochemical characteristics of water samples at the selected 43 sites of Luoma Lake watershed were measured. Results showed that the variations in pH value (7.31–8.41), hardness (5–20 °d) and dissolved oxygen (4.44–11.03 mg/L) of Luoma Lake and its main inflow and outflow rivers had negligible impacts on the acute toxicity testing of V. fischeri. The luminescence inhibition rates ranged from -11.21% to 10.80% at the 43 sites. Pearson’s correlation analysis in the experiment revealed that temperature, pH value, hardness, and turbidity had no correlation with luminescence inhibition rate, whereas dissolved oxygen showed a weak statistically positive correlation with a Pearson correlation coefficient of 0.455 (p<0.05).

相关研究