《工程(英文)》 >> 2016年 第2卷 第2期 doi: 10.1016/J.ENG.2016.02.006
拓扑优化中采用增材制造填充构件的结构屈曲荷载提升设计
Section of Solid Mechanics, Department of Mechanical Engineering, Technical University of Denmark, Lyngby DK-2800, Denmark
收稿日期 :2016-02-29 修回日期 :2016-05-09 录用日期 : 2016-05-25 发布日期 :2016-06-23下一篇 上一篇
摘要
增材制造可实现优质多功能构件所具有的高度复杂几何构型的制备。可以直接制备内含多孔填充的结构部件是其独有特征的一个例证。现有的设计方法还难以充分利用这一设计自由度,直接获得类似结构的设计。本文将展示涂层方法 (coating approach) 的拓扑优化方法来作为多孔填充构件的设计方法,所设计的构件具有显著改进的临界屈曲载荷,从而使得整体结构部件的稳定性增强。传统的柔顺性拓扑优化方法极少在数学模型中考虑构件的屈曲约束,稳定性要求通常要经过后续的校核与改进过程满足。这一后续过程往往只能获得次优设计。本文所展示的方法弥补了传统柔顺性拓扑优化模型中难以考虑构件屈曲约束的缺陷。利用涂层拓扑优化方法与传统柔顺性拓扑优化同时对经典的MBB 梁进行设计,并采用熔丝增材制造技术对设计结果进行了制备。实验结果验证了涂层方法的数学模型的正确性。由于填充材料的性质,在相同条件下,涂层优化得到的多孔填充结构的屈曲载荷比传统优化得到的实体结构高四倍以上。
图片
图1
图2
图3
图4
图5
图6
参考文献
[1] Clausen A, Aage N, Sigmund O. Topology optimization of coated structures and material interface problems. Comput Methods Appl Mech Eng 2015;290:524–41. 链接1
[2] Bendsøe MP, Sigmund O. Topology optimization: theory, methods and applications. 2nd ed. Berlin: Springer-Verlag; 2003.
[3] Lindgaard E, Dahl J. On compliance and buckling objective functions in topology optimization of snap-through problems. Struct Multidiscipl Optim 2013;47(3):409–21. 链接1
[4] Gao X, Ma H. Topology optimization of continuum structures under buckling constraints. Comput Struc 2015;157:142–52. 链接1
[5] Jansen M, Lombaert G, Schevenels M. Robust topology optimization of structures with imperfect geometry based on geometric nonlinear analysis. Comput Methods Appl Mech Eng 2015;285:452–67. 链接1
[6] Dunning PD, Ovtchinnikov E, Scott J, Kim HA. Level-set topology optimization with many linear buckling constraints using an efficient and robust eigensolver.?Int J Numer Methods Eng 2016. In press.
[7] Olhoff N, Bendsøe MP, Rasmussen J. On CAD-integrated structural topology and design optimization. Comput Methods Appl Mech Eng 1991;89(1−3): 259–79. 链接1
[8] Svanberg K. The method of moving asymptotes—a new method for structural optimization. Int J Numer Methods Eng 1987;24:359–73. 链接1
[9] Lazarov BS, Sigmund O. Filters in topology optimization based on Helmholtz-type differential equations. Int J Numer Methods Eng 2011;86:765–81. 链接1
[10] Guest JK, Prévost JH, Belytschko T. Achieving minimum length scale in topology optimization using nodal design variables and projection functions. Int J Numer Methods Eng 2004;61:238-54. 链接1
[11] Sigmund O. Morphology-based black and white filters for topology optimization. Struct Multidiscipl Optim 2007;33(4):401–24. 链接1
[12] Xu S, Cai Y, Cheng G. Volume preserving nonlinear density filter based on heaviside functions. Struct Multidiscipl Optim 2010;41(4):495–505. 链接1
[13] Hashin Z, Shtrikman S. A variational approach to the theory of the elastic behaviour of multiphase materials. J Mech Phys Solids 1963;11(2):127–40. 链接1
[14] Sigmund O. A new class of extremal composites. J Mech Phys Solids 2000;48(2):397–428. 链接1
[15] Torquato S, Gibiansky LV, Silva MJ, Gibson LJ. Effective mechanical and transport properties of cellular solids. Int J Mech Sci 1998;40(1):71–82. 链接1
[16] Clausen A, Andreassen E, Sigmund O. Topology optimization for coated structures. In: Li Q, Steven GP, Zhang Z, editors Proceedings of the 11th World Congress on Structural and Multidisciplinary Optimization; 2015 Jun 7-12; Sydney, Australia; 2015. p. 25–30.
[17] Ahn SH, Montero M, Odell D, Roundy S, Wright PK. Anisotropic material properties of fused deposition modeling ABS. Rapid Prototyping J 2002;8(4):248–57. 链接1
[18] Cook RD, Malkus DS, Plesha ME, Witt RJ. Concepts and applications of finite element analysis. 4th ed. New York: John Wiley and Sons; 2002.
[19] Haghpanah B, Papadopoulos J, Mousanezhad D, Nayeb-Hashemi H, Vaziri A. Buckling of regular, chiral and hierarchical honeycombs under a general macroscopic stress state. Proc Math Phys Eng Sci 2014;470(2167):20130856. 链接1
[20] Fan H, Jin F, Fang D. Buckling of regular, chiral and hierarchical honeycombs under a general macroscopic stress state. Mater Des 2009;30(10):4136–45. 链接1
[21] Mae H, Omiya M, Kishimoto K. Comparison of mechanical properties of PP/SEBS blends at intermediate and high strain rates with SiO2?nanoparticles vs. CaCO3?fillers. J Appl Polym Sci 2008;110:1145–57. 链接1
[22] Gibson I, Rosen D, Stucker B. Additive manufacturing technologies: 3D printing, rapid prototyping, and direct digital manufacturing. 2nd ed. New York: Springer; 2015.
[23] Panetta J, Zhou Q, Malomo L, Pietroni N, Cignoni P, Zorin D. Elastic textures for additive fabrication. ACM Trans Graph 2015;34(4):135:1–135:12. 链接1