期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2016年 第2卷 第4期 doi: 10.1016/J.ENG.2016.04.017

厌氧产能生物技术用于城市污水处理的研究进展

CAS Key Laboratory of Urban Pollutants Conversion, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China

录用日期: 2016-12-27 发布日期: 2016-12-28

下一篇 上一篇

摘要

城市污水处理长期以来被认为是一个高能耗、高成本的过程。传统处理方法通过消耗大量能量来破坏污水中蕴含的能量物质,仅有很少的一部分能量和营养物质可以得到回用。近年来,一些污水处理厂已经开始尝试通过技术革新和旧技术升级来将自己转变为“资源工厂”。其中,厌氧生物处理作为一种能将污水中的有机物转化为能源并且保留其中的营养物质不被破坏的技术,重新引起了人们的兴趣。但是,这类技术的实际应用目前仍面临着技术和经济方面的诸多挑战。本文综述了当前废水厌氧生物处理技术的最新进展状况,重点介绍了侧流强化污泥厌氧消化、厌氧膜生物反应器(AnMBR)和微生物电化学系统,展望了这些技术走向应用所面对的机遇和挑战。本文旨在为城市污水厌氧处理工艺的设计和优化提供参考。

图片

图1

图2

图3

参考文献

[ 1 ] Tchobanoglous G, Stensel HD, Tsuchihashi R, Burton F. Wastewater engineering: treatment and resource recovery. Metcalf E, Eddy M, editors. New York: McGraw-Hill; 2014.

[ 2 ] Bemberis I, Hubbard PJ, Leonard FB. Membrane sewage treatment systems—potential for complete wastewater treatment. In: Proceedings of Specialty Conference on Drainage Materials and Annual Winter Meeting; 1971 Dec 6–10; Chicago, USA. St. Joseph: American Society of Agricultural Engineers; 1971. p. 1–28.

[ 3 ] Morgenroth E, Sherden T, van Loosdrecht MCM, Heijnen JJ, Wilderer PA. Aerobic granular sludge in a sequencing batch reactor. Water Res 1997;31(12):3191–4 链接1

[ 4 ] van Loosdrecht MCM, Brdjanovic D. Anticipating the next century of wastewater treatment. Science 2014;344(6191):1452–3 链接1

[ 5 ] Guest JS, Skerlos SJ, Barnard JL, Beck MB, Daigger GT, Hilger H, A new planning and design paradigm to achieve sustainable resource recovery from wastewater. Environ Sci Technol 2009;43(16):6126–30 链接1

[ 6 ] McCarty PL, Bae J, Kim J. Domestic wastewater treatment as a net energy producer—can this be achieved? Environ Sci Technol 2011;45(17):7100–6 链接1

[ 7 ] Li W, Yu H, Rittmann BE. Chemistry: reuse water pollutants. Nature 2015;528(7580):29–31 链接1

[ 8 ] van Lier JB. High-rate anaerobic wastewater treatment: diversifying from end-of-the-pipe treatment to resource-oriented conversion techniques. Water Sci Technol 2008;57(8):1137–48 链接1

[ 9 ] Batstone DJ, Hülsen T, Mehta CM, Keller J. Platforms for energy and nutrient recovery from domestic wastewater: a review. Chemosphere 2015;140:2–11 链接1

[10] Abbasi T, Tauseef SM, Abbasi SA. Anaerobic digestion for global warming control and energy generation—an overview. Renew Sust Energ Rev 2012;16(5):3228–42 链接1

[11] Verstraete W, Van de Caveye P, Diamantis V. Maximum use of resources present in domestic “used water”. Bioresour Technol 2009;100(23):5537–45 链接1

[12] Batstone DJ, Virdis B. The role of anaerobic digestion in the emerging energy economy. Curr Opin Biotechnol 2014;27(6):142–9 链接1

[13] Gao H, Scherson YD, Wells GF. Towards energy neutral wastewater treatment: methodology and state of the art. Environ Sci Process Impacts 2014;16(6):1223–46 链接1

[14] Liu S, Ni B, Li W, Sheng G, Tang Y, Yu H. Modeling of the contact-adsorption-regeneration (CAR) activated sludge process. Bioresour Technol 2011; 102(3):2199–205 链接1

[15] Willis J, editor. Assessment of technology advancements for future energy reduction. Alexandria: Water Environment Reuse Foundation; 2016.

[16] Mehdizadeh SN, Eskicioglu C, Bobowski J, Johnson T. Conductive heating and microwave hydrolysis under identical heating profiles for advanced anaerobic digestion of municipal sludge. Water Res 2013;47(14):5040–51 链接1

[17] Cano R, Pérez-Elvira SI, Fdz-Polanco F. Energy feasibility study of sludge pretreatments: a review. Appl Energ 2015;149:176–85 链接1

[18] Wickham R, Galway B, Bustamante H, Nghiem LD. Biomethane potential evaluation of co-digestion of sewage sludge and organic wastes. Int Biodeterior Biodegrad 2016;113:3–8 链接1

[19] Di Maria F, Micale C, Contini S. Energetic and environmental sustainability of the co-digestion of sludge with bio-waste in a life cycle perspective. Appl Energ 2016;171:67–76 链接1

[20] Bisogni JJ Jr, Lawrence AW. Relationships between biological solids retention time and settling characteristics of activated sludge. Water Res 1971;5(9):753–63 链接1

[21] Wang Z, Wu Z, Hua J, Wang X, Du X, Hua H. Application of flat-sheet membrane to thickening and digestion of waste activated sludge (WAS). J Hazard Mater 2008;154(1–3):535–42 链接1

[22] Kim HG, Chung TH. Performance of the sludge thickening and reduction at various factors in a pilot-scale MBR. Separ Purif Technol 2013;104(5):297–306 链接1

[23] Xia A, Murphy JD. Microalgal cultivation in treating liquid digestate from biogas systems. Trends Biotechnol 2016;34(4):264–75 链接1

[24] Mills N, Pearce P, Farrow J, Thorpe RB, Kirkby NF. Environmental & economic life cycle assessment of current & future sewage sludge to energy technologies. Waste Manag 2014;34(1):185–95 链接1

[25] Pretel R, Durán F, Robles A, Ruano MV, Ribes J, Serralta J, . Designing an AnMBR-based WWTP for energy recovery from urban wastewater: the role of primary settling and anaerobic digestion. Separ Purif Technol 2015;156(Part 2):132–9 链接1

[26] Smith AL, Skerlos SJ, Raskin L. Psychrophilic anaerobic membrane bioreactor treatment of domestic wastewater. Water Res 2013;47(4):1655–65 链接1

[27] Smith AL, Stadler LB, Cao L, Love NG, Raskin L, Skerlos SJ. Navigating wastewater energy recovery strategies: a life cycle comparison of anaerobic membrane bioreactor and conventional treatment systems with anaerobic digestion. Environ Sci Technol 2014;48(10):5972–81 链接1

[28] Ozgun H, Tao Y, Ersahin ME, Zhou Z, Gimenez JB, Spanjers H, . Impact of temperature on feed-flow characteristics and filtration performance of an upflow anaerobic sludge blanket coupled ultrafiltration membrane treating municipal wastewater. Water Res 2015;83:71–83 链接1

[29] Lettinga G, Rebac S, Zeeman G. Challenge of psychrophilic anaerobic wastewater treatment. Trends Biotechnol 2001;19(9):363–70 链接1

[30] Martinez-Sosa D, Helmreich B, Netter T, Paris S, Bischof F, Horn H. Anaerobic submerged membrane bioreactor (AnSMBR) for municipal wastewater treatment under mesophilic and psychrophilic temperature conditions. Bioresour Technol 2011;102(22):10377–85 链接1

[31] Yoo RH, Kim JH, McCarty PL, Bae JH. Effect of temperature on the treatment of domestic wastewater with a staged anaerobic fluidized membrane bioreactor. Water Sci Technol 2014;69(6):1145–50 链接1

[32] Gouveia J, Plaza F, Garralon G, Fdz-Polanco F, Peña M. Long-term operation of a pilot scale anaerobic membrane bioreactor (AnMBR) for the treatment of municipal wastewater under psychrophilic conditions. Bioresour Technol 2015;185:225–33 链接1

[33] Ozgun H, Dereli RK, Ersahin ME, Kinaci C, Spanjers H, van Lier JB. A review of anaerobic membrane bioreactors for municipal wastewater treatment: integration options, limitations and expectations. Separ Purif Technol 2013;118:89–104 链接1

[34] Liao BQ, Kraemer JT, Bagley DM. Anaerobic membrane bioreactors: applications and research directions. Crit Rev Environ Sci Technol 2006;36(6):489–530 链接1

[35] Gao D, Hu Q, Yao C, Ren N. Treatment of domestic wastewater by an integrated anaerobic fluidized-bed membrane bioreactor under moderate to low temperature conditions. Bioresour Technol 2014;159:193–8 链接1

[36] Ozgun H, Ersahin ME, Tao Y, Spanjers H, van Lier JB. Effect of upflow velocity on the effluent membrane fouling potential in membrane coupled upflow anaerobic sludge blanket reactors. Bioresour Technol 2013;147:285–92 链接1

[37] Chu L, Yang F, Zhang X. Anaerobic treatment of domestic wastewater in a membrane-coupled expended granular sludge bed (EGSB) reactor under moderate to low temperature. Process Biochem 2005;40(3–4):1063–70 链接1

[38] Gouveia J, Plaza F, Garralon G, Fdz-Polanco F, Peña M. A novel configuration for an anaerobic submerged membrane bioreactor (AnSMBR). Long-term treatment of municipal wastewater under psychrophilic conditions. Bioresour Technol 2015;198:510–9 链接1

[39] Judd S, Judd C, editors. Principles and applications of membrane bioreactors in water and wastewater treatment. 2nd ed. Burlington: Butterworth-Heinemann; 2011.

[40] Li W, Yu H. Anaerobic granule technologies for hydrogen recovery from wastes: the way forward. Crit Rev Environ Sci Technol 2013;43(12):1246–80 链接1

[41] Shin C, Bae J, McCarty PL. Lower operational limits to volatile fatty acid degradation with dilute wastewaters in an anaerobic fluidized bed reactor. Bioresour Technol 2012;109:13–20 链接1

[42] Yoo R, Kim J, McCarty PL, Bae J. Anaerobic treatment of municipal wastewater with a staged anaerobic fluidized membrane bioreactor (SAF-MBR) system. Bioresour Technol 2012;120:133–9 链接1

[43] Kim J, Kim K, Ye H, Lee E, Shin C, McCarty PL, . Anaerobic fluidized bed membrane bioreactor for wastewater treatment. Environ Sci Technol 2011;45(2):576–81 链接1

[44] Shin C, McCarty PL, Kim J, Bae J. Pilot-scale temperate-climate treatment of domestic wastewater with a staged anaerobic fluidized membrane bioreactor (SAF-MBR). Bioresour Technol 2014;159:95–103 链接1

[45] Hahn MJ, Figueroa LA. Pilot scale application of anaerobic baffled reactor for biologically enhanced primary treatment of raw municipal wastewater. Water Res 2015;87:494–502 链接1

[46] Liu J, Jia X, Gao B, Bo L, Wang L. Membrane fouling behavior in anaerobic baffled membrane bioreactor under static operating condition. Bioresour Technol 2016;214:582–8 链接1

[47] Kola A, Ye Y, Le-Clech P, Chen V. Transverse vibration as novel membrane fouling mitigation strategy in anaerobic membrane bioreactor applications. J Membr Sci 2014;455:320–9 链接1

[48] Yu Z, Song Z, Wen X, Huang X. Using polyaluminum chloride and polyacrylamide to control membrane fouling in a cross-flow anaerobic membrane bioreactor. J Membr Sci 2015;479:20–7 链接1

[49] Teo CW, Wong PCY. Enzyme augmentation of an anaerobic membrane bioreactor treating sewage containing organic particulates. Water Res 2014;48:335–44 链接1

[50] Kim J, Shin J, Kim H, Lee JY, Yoon MH, Won S, . Membrane fouling control using a rotary disk in a submerged anaerobic membrane sponge bioreactor. Bioresour Technol 2014;172:321–7 链接1

[51] Jaffrin MY. Dynamic filtration with rotating disks, and rotating and vibrating membranes: an update. Curr Opin Chem Eng 2012;1(2):171–7 链接1

[52] Ruigómez I, Vera L, González E, González G, Rodríguez-Sevilla J. A novel rotating HF membrane to control fouling on anaerobic membrane bioreactors treating wastewater. J Membr Sci 2016;501:45–52 链接1

[53] Liu L, Liu J, Gao B, Yang F, Chellam S. Fouling reductions in a membrane bioreactor using an intermittent electric field and cathodic membrane modified by vapor phase polymerized pyrrole. J Membr Sci 2012;394–5:202–8 链接1

[54] Katuri KP, Werner CM, Jimenez-Sandoval RJ, Chen W, Jeon S, Logan BE, . A novel anaerobic electrochemical membrane bioreactor (AnEMBR) with conductive hollow-fiber membrane for treatment of low-organic strength solutions. Environ Sci Technol 2014;48(21):12833–41 链接1

[55] Akamatsu K, Lu W, Sugawara T, Nakao S. Development of a novel fouling suppression system in membrane bioreactors using an intermittent electric field. Water Res 2010;44(3):825–30 链接1

[56] Werner CM, Katuri KP, Hari AR, Chen W, Lai Z, Logan BE, . Graphene-coated hollow fiber membrane as the cathode in anaerobic electrochemical membrane bioreactors—effect of configuration and applied voltage on performance and membrane fouling. Environ Sci Technol 2016;50(8):4439–47 链接1

[57] Wong PCY, Lee JY, Teo CW. Application of dispersed and immobilized hydrolases for membrane fouling mitigation in anaerobic membrane bioreactors. J Membr Sci 2015;491:99–109 链接1

[58] Kim SR, Oh HS, Jo SJ, Yeon KM, Lee CH, Lim DJ, . Biofouling control with bead-entrapped quorum quenching bacteria in membrane bioreactors: physical and biological effects. Environ Sci Technol 2013;47(2):836–42 链接1

[59] Lee S, Park SK, Kwon H, Lee SH, Lee K, Nahm CH, . Crossing the border between laboratory and field: bacterial quorum quenching for anti-biofouling strategy in an MBR. Environ Sci Technol 2016;50(4):1788–95 链接1

[60] Smith AL, Stadler LB, Love NG, Skerlos SJ, Raskin L. Perspectives on anaerobic membrane bioreactor treatment of domestic wastewater: a critical review. Bioresour Technol 2012;122:149–59 链接1

[61] Cookney J, McLeod A, Mathioudakis V, Ncube P, Soares A, Jefferson B, . Dissolved methane recovery from anaerobic effluents using hollow fibre membrane contactors. J Membr Sci 2016;502:141–50 链接1

[62] Eastern Research Group, Inc., Resource Dynamics Corporation. Opportunities for combined heat and power at wastewater treatment facilities: market analysis and lessons from the field. Report. Washington, DC: US Environmental Protection Agency; 2011 Oct.

[63] Cookney J, Cartmell E, Jefferson B, McAdam EJ. Recovery of methane from anaerobic process effluent using poly-di-methyl-siloxane membrane contactors. Water Sci Technol 2012;65(4):604–10 链接1

[64] Bandara WM, Satoh H, Sasakawa M, Nakahara Y, Takahashi M, Okabe S. Removal of residual dissolved methane gas in an upflow anaerobic sludge blanket reactor treating low-strength wastewater at low temperature with degassing membrane. Water Res 2011;45(11):3533–40 链接1

[65] Goh S, Zhang J, Liu Y, Fane AG. Fouling and wetting in membrane distillation (MD) and MD-bioreactor (MDBR) for wastewater reclamation. Desalination 2013;323:39–47 链接1

[66] McLeod A, Jefferson B, McAdam EJ. Toward gas-phase controlled mass transfer in micro-porous membrane contactors for recovery and concentration of dissolved methane in the gas phase. J Membr Sci 2016;510:466–71 链接1

[67] Harnisch F, Schröder U. From MFC to MXC: chemical and biological cathodes and their potential for microbial bioelectrochemical systems. Chem Soc Rev 2010;39(11):4433–48 链接1

[68] Liu X, Li W, Yu H. Cathodic catalysts in bioelectrochemical systems for energy recovery from wastewater. Chem Soc Rev 2014;43(22):7718–45 链接1

[69] Logan BE. Exoelectrogenic bacteria that power microbial fuel cells. Nat Rev Microbiol 2009;7(5):375–81 链接1

[70] Yu J, Seon J, Park Y, Cho S, Lee T. Electricity generation and microbial community in a submerged-exchangeable microbial fuel cell system for low-strength domestic wastewater treatment. Bioresour Technol 2012;117:172–9 链接1

[71] Sun M, Zhai L, Li W, Yu H. Harvest and utilization of chemical energy in wastes by microbial fuel cells. Chem Soc Rev 2016;45(10):2847–70 链接1

[72] Li W, Yu H, He Z. Towards sustainable wastewater treatment by using microbial fuel cells-centered technologies. Energ Environ Sci 2014;7(3):911–24 链接1

[73] Logan BE. Scaling up microbial fuel cells and other bioelectrochemical systems. Appl Microbiol Biotechnol 2010;85(6):1665–71 链接1

[74] Heidrich ES, Edwards SR, Dolfing J, Cotterill SE, Curtis TP. Performance of a pilot scale microbial electrolysis cell fed on domestic wastewater at ambient temperatures for a 12 month period. Bioresour Technol 2014;173:87–95 链接1

[75] Feng Y, He W, Liu J, Wang X, Qu Y, Ren N. A horizontal plug flow and stackable pilot microbial fuel cell for municipal wastewater treatment. Bioresour Technol 2014;156:132–8 链接1

[76] Wu S, Li H, Zhou X, Liang P, Zhang X, Jiang Y, . A novel pilot-scale stacked microbial fuel cell for efficient electricity generation and wastewater treatment. Water Res 2016;98:396–403 链接1

[77] Pant D, Singh A, Van Bogaert G, Olsen SI, Nigam PS, Diels L, . Bioelectrochemical systems (BES) for sustainable energy production and product recovery from organic wastes and industrial wastewaters. RSC Adv 2012;2(4):1248–63 链接1

[78] Premier GC, Kim JR, Massanet-Nicolau J, Kyazze G, Esteves SRR, Penumathsa BKV, . Integration of biohydrogen, biomethane and bioelectrochemical systems. Renew Energy 2013;49:188–92 链接1

[79] Weld RJ, Singh R. Functional stability of a hybrid anaerobic digester/microbial fuel cell system treating municipal wastewater. Bioresour Technol 2011; 102(2):842–7 链接1

[80] Wang H, Qu Y, Li D, Zhou X, Feng Y. Evaluation of an integrated continuous stirred microbial electrochemical reactor: wastewater treatment, energy recovery and microbial community. Bioresour Technol 2015;195:89–95 链接1

[81] Liu D, Zhang L, Chen S, Buisman C, ter Heijne A. Bioelectrochemical enhancement of methane production in low temperature anaerobic digestion at 10 °C. Water Res 2016;99:281–7 链接1

[82] Rabaey K, Rozendal RA. Microbial electrosynthesis—revisiting the electrical route for microbial production. Nat Rev Microbiol 2010;8(10):706–16 链接1

[83] Ren L, Ahn Y, Logan BE. A two-stage microbial fuel cell and anaerobic fluidized bed membrane bioreactor (MFC-AFMBR) system for effective domestic wastewater treatment. Environ Sci Technol 2014;48(7):4199–206 链接1

[84] An J, Kim B, Chang IS, Lee HS. Shift of voltage reversal in stacked microbial fuel cells. J Power Sources 2015;278:534–9 链接1

[85] Li H, editor. Global trends & challenges in water science, research and management. London: International Water Association; 2016.

[86] Gong Y, Radachowsky SE, Wolf M, Nielsen ME, Girguis PR, Reimers CE. Benthic microbial fuel cell as direct power source for an acoustic modem and seawater oxygen/temperature sensor system. Environ Sci Technol 2011;45(11):5047–53 链接1

[87] Li W, Yu H. Utilization of microbe-derived electricity for practical application. Environ Sci Technol 2014;48(1):17–8 链接1

[88] Dong Y, Feng Y, Qu Y, Du Y, Zhou X, Liu J. A combined system of microbial fuel cell and intermittently aerated biological filter for energy self-sufficient wastewater treatment. Sci Rep 2015;5:18070 链接1

[89] Wang Y, Li W, Sheng G, Shi B, Yu H. In-situ utilization of generated electricity in an electrochemical membrane bioreactor to mitigate membrane fouling. Water Res 2013;47(15):5794–800 链接1

[90] Yuan S, Sheng G, Li W, Lin Z, Zeng R, Tong Z, . Degradation of organic pollutants in a photoelectrocatalytic system enhanced by a microbial fuel cell. Environ Sci Technol 2010;44(14):5575–80 链接1

[91] Wang H, Ren ZJ. Bioelectrochemical metal recovery from wastewater: a review. Water Res 2014;66:219–32 链接1

[92] Liu W, Jiang H, Yu H. Development of biochar-based functional materials: toward a sustainable platform carbon material. Chem Rev 2015;115(22):12251–85 链接1

[93] Rajabi H, Ghaemi N, Madaeni SS, Daraei P, Astinchap B, Zinadini S, . Nano-ZnO embedded mixed matrix polyethersulfone (PES) membrane: influence of nanofiller shape on characterization and fouling resistance. Appl Surf Sci 2015;349:66–77 链接1

[94] Rahimi Z, Zinatizadeh AAL, Zinadini S. Preparation of high antibiofouling amino functionalized MWCNTs/PES nanocomposite ultrafiltration membrane for application in membrane bioreactor. J Ind Eng Chem 2015;29:366–74 链接1

[95] Kim JH, Choi DC, Yeon KM, Kim SR, Lee CH. Enzyme-immobilized nanofiltration membrane to mitigate biofouling based on quorum quenching. Environ Sci Technol 2011;45(4):1601–7 链接1

[96] Werber JR, Osuji CO, Elimelech M. Materials for next-generation desalination and water purification membranes. Nat Rev Mater 2016;1:16018 链接1

[97] Kondaveeti S, Min B. Bioelectrochemical reduction of volatile fatty acids in anaerobic digestion effluent for the production of biofuels. Water Res 2015;87:137–44 链接1

[98] Pennisi E. A better way to denitrify wastewater. Science 2012;337(6095): 675 链接1

[99] Raghoebarsing AA, Pol A, van de Pas-Schoonen KT, Smolders AJP, Ettwig KF, Rijpstra WIC, . A microbial consortium couples anaerobic methane oxidation to denitrification. Nature 2006;440(7086):918–21 链接1

[100] Haroon MF, Hu S, Shi Y, Imelfort M, Keller J, Hugenholtz P, . Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage. Nature 2013;500(7464):567–70 链接1

[101] Jiang F, Zhang L, Peng G, Liang S, Qian J, Wei L, . A novel approach to realize SANI process in freshwater sewage treatment—use of wet flue gas desulfurization waste streams as sulfur source. Water Res 2013;47(15):5773–82 链接1

[102] Beale DJ, Karpe AV, McLeod JD, Gondalia SV, Muster TH, Othman MZ, . An ‘omics’ approach towards the characterisation of laboratory scale anaerobic digesters treating municipal sewage sludge. Water Res 2016;88:346–57 链接1

[103] Vanwonterghem I, Jensen PD, Ho DP, Batstone DJ, Tyson GW. Linking microbial community structure, interactions and function in anaerobic digesters using new molecular techniques. Curr Opin Biotechnol 2014;27:55–64 链接1

[104] Hering JG, Waite TD, Luthy RG, Drewes JE, Sedlak DL. A changing framework for urban water systems. Environ Sci Technol 2013;47(19):10721–6 链接1

相关研究