期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2017年 第3卷 第2期 doi: 10.1016/J.ENG.2017.02.005

非线性调合调度问题的全局优化

a Department of Chemical Engineering, McMaster University, Hamilton, ON L8S 4L8, Canada
b Center for Mathematics, Fundamental Applications and Operations Research, Faculty of Sciences, University of Lisbon, Lisbon 1749-016, Portugal

收稿日期: 2016-12-07 修回日期: 2017-02-16 录用日期: 2017-02-20 发布日期: 2017-03-28

下一篇 上一篇

摘要

汽油调合调度是炼油工业中的一个重要问题。一方面,该问题具有调度问题本身所具有的组合优化特性;另一方面,由于调合各种具有不同品质特性的物料,导致该优化问题的非凸性。本文提出一种新型的全局优化算法,用于求解基于连续时间汽油调合调度模型的混合整数非线性规划问题。该模型包含调合配方优化、分配问题及若干操作特性和约束;算法上采用分段McCormick 松弛(PMCR) 和规范多参数解聚(NMDT),计算全局最优解的估计值,其松弛技术将双线性项中的一个变量值域进行分割,进而在每一个分段上产生凸松弛;通过增加分段数和缩减变量的值域,提高对全局最优解的估计。本文利用该算法求解四个案例,并与两个商业全局优化求解器和两个启发式算法进行比较,结果表明,本文提出的全局优化算法与商业求解器具有同等水平,但是在计算速度上稍逊于启发式算法。

图片

图1

图2

图3

图4

图5

图6

图7

图8

图9

图10

图11

参考文献

[ 1 ] Harjunkoski I, Maravelias CT, Bongers P, Castro PM, Engell S, Grossmann IE, et al.Scope for industrial applications of production scheduling models and solution methods. Comput Chem Eng 2014;62:161–93 链接1

[ 2 ] Méndez CA, Grossmann IE, Harjunkoski I, Kaboré P. A simultaneous optimization approach for off-line blending and scheduling of oil-refinery operations. Comput Chem Eng 2006;30(4):614–34 链接1

[ 3 ] Li J, Karimi I. Scheduling gasoline blending operations from recipe determination to shipping using unit slots. Ind Eng Chem Res 2011;50(15):9156–74 链接1

[ 4 ] Li J, Xiao X, Floudas CA. Integrated gasoline blending and order delivery operations: Part I. Short-term scheduling and global optimization for single and multi-period operations. AIChE J 2016;62(6):2043–70 链接1

[ 5 ] Singh A, Forbes JF, Vermeer PJ, Woo SS. Model-based real-time optimization of automotive gasoline blending operations. J Process Contr 2000;10(1):43–58 链接1

[ 6 ] Joly M, Pinto JM. Mixed-integer programming techniques for the scheduling of fuel oil and asphalt production. Chem Eng Res Des 2003;81(4):427–47 链接1

[ 7 ] Floudas CA, Lin X. Continuous-time versus discrete-time approaches for scheduling of chemical processes: A review. Comput Chem Eng 2004;28(11):2109–29 链接1

[ 8 ] Sundaramoorthy A, Maravelias CT. Computational study of network-based mixed-integer programming approaches for chemical production scheduling. Ind Eng Chem Res 2011;50(9):5023–40 链接1

[ 9 ] Maravelias CT. General framework and modeling approach classification for chemical production scheduling. AIChE J 2012;58(6):1812–28 链接1

[10] Jia Z, Ierapetritou M. Mixed-integer linear programming model for gasoline blending and distribution scheduling. Ind Eng Chem Res 2003;42(4):825–35 链接1

[11] Jia Z, Ierapetritou M. Efficient short-term scheduling of refinery operations based on a continuous time formulation. Comput Chem Eng 2004;28(6–7):1001–19 链接1

[12] Glismann K, Gruhn G. Short-term scheduling and recipe optimization of blending processes. Comput Chem Eng 2001;25(4–6):627–34 链接1

[13] Li J, Karimi I, Srinivasan R. Recipe determination and scheduling of gasoline blending operations. AIChE J 2010;56(2):441–65.

[14] Castillo PAC, Mahalec V. Inventory pinch based, multiscale models for integrated planning and scheduling—Part II: Gasoline blend scheduling. AIChE J 2014;60(7):2475–97 链接1

[15] Castillo PAC, Mahalec V. Inventory pinch gasoline blend scheduling algorithm combining discrete- and continuous-time models. Comput Chem Eng 2016;84:611–26 链接1

[16] Castillo PAC, Mahalec V. Improved continuous-time model for gasoline blend scheduling. Comput Chem Eng 2016;84:627–46 链接1

[17] Lotero I, Trespalacios F, Grossmann IE, Papageorgiou DJ, Cheon MS. An MILP-MINLP decomposition method for the global optimization of a source based model of the multiperiod blending problem. Comput Chem Eng 2016;87:13–35 链接1

[18] Castro PM. New MINLP formulation for the multiperiod pooling problem. AIChE J 2015;61(11):3728–38 链接1

[19] Kolodziej SP, Grossmann IE, Furman KC, Sawaya NW. A discretization-based approach for the optimization of the multiperiod blend scheduling problem. Comput Chem Eng 2013;53:122–42 链接1

[20] Cerdá J, Pautasso PC, Cafaro DC. A cost-effective model for the gasoline blend optimization problem. AIChE J 2016;62(9):3002–19 链接1

[21] Cerdá J, Pautasso PC, Cafaro DC. Optimizing gasoline recipes and blending operations using nonlinear blend models. Ind Eng Chem Res 2016;55(28):7782–800 链接1

[22] Tawarmalani M, Sahinidis NV. A polyhedral branch-and-cut approach to global optimization. Math Program 2005;103(2):225–49 链接1

[23] Misener R, Floudas CA. ANTIGONE: Algorithms for continuous/integer global optimization of nonlinear equations. J Glob Optim 2014;59(2):503–26 链接1

[24] Boland N, Kalinowski T, Rigtering F. New multi-commodity flow formulations for the pooling problem. J Glob Optim 2016;66(4):669–710 链接1

[25] Sherali HD, Alameddine A. A new reformulation-linearization technique for bilinear programming problems. J Glob Optim 1992;2(4):379–410 链接1

[26] Ryoo HS, Sahinidis NV. A branch-and-reduce approach for global optimization. J Glob Optim 1996;8(2):107–38 链接1

[27] Smith EMB, Pantelides CC. Global optimization of nonconvex MINLPs. Comput Chem Eng 1997;21(Suppl):S791–6 链接1

[28] Belotti P, Lee J, Liberti L, Margot F, W?chter A. Branching and bounds tightening techniques for non-convex MINLP. Optim Methods Softw 2009;24(4–5):597–634 链接1

[29] Achterberg T. SCIP: Solving constraint integer programs. Math Program Comput 2009;1(1):1–41 链接1

[30] Castro PM. Spatial branch-and-bound algorithm for MIQCPs featuring multiparametric disaggregation. Optim Methods Softw. Epub 2016 Dec 13 链接1

[31] Castillo PC, Castro PM, Mahalec V. Global optimization algorithm for large-scale refinery planning models with bilinear terms. Ind Eng Chem Res 2017;56(2):530–48 链接1

[32] McCormick GP. Computability of global solutions to factorable nonconvex programs: Part I—Convex underestimating problems. Math Program 1976;10(1):147–75 链接1

[33] Karuppiah R, Grossmann IE. Global optimization for the synthesis of integrated water systems in chemical processes. Comput Chem Eng 2006;30(4):650–73 链接1

[34] Castro PM. Tightening piecewise McCormick relaxations for bilinear problems. Comput Chem Eng 2015;72:300–11 链接1

[35] Misener R, Thompson JP, Floudas CA. APOGEE: Global optimization of standard, generalized, and extended pooling problems via linear and logarithmic partitioning schemes. Comput Chem Eng 2011;35(5):876–92 链接1

[36] Kolodziej S, Castro PM, Grossmann IE. Global optimization of bilinear programs with a multiparametric disaggregation technique. J Glob Optim 2013;57(4):1039–63 链接1

[37] Castro PM. Normalized multiparametric disaggregation: An efficient relaxation for mixed-integer bilinear problems. J Glob Optim 2016;64(4):765–84 链接1

[38] Castro PM, Grossmann IE. Global optimal scheduling of crude oil blending operations with RTN continuous-time and multiparametric disaggregation. Ind Eng Chem Res 2014;53(39):15127–45 链接1

[39] Castro PM. Source-based discrete and continuous-time formulations for the crude oil pooling problem. Comput Chem Eng 2016;93:382–401 链接1

[40] Castillo PAC, Mahalec V, Kelly JD. Inventory pinch algorithm for gasoline blend planning. AIChE J 2013;59(10):3748–66 链接1

[41] Healy WC, Maassen CW, Peterson RT. A new approach to blending octanes. In: Proceedings of the 24th Midyear Meeting of American Petroleum Institute’s Division of Refining; 1959 May 27; New York, US; 1959. p. 132–136.

[42] Castro PM, Grossmann IE. Optimality-based bound contraction with multiparametric disaggregation for the global optimization of mixed-integer bilinear problems. J Glob Optim 2014;59(2):277–306 链接1

[43] Kallrath J. Planning and scheduling in the process industry. OR Spectrum 2002;24(1):219–250 链接1

相关研究