期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2017年 第3卷 第6期 doi: 10.1016/j.eng.2017.12.004

采矿过程中磨料水射流性能通用预测方法

OOO Skuratovsky Experimental Plant, Tula 300911, Russia

发布日期: 2017-12-30

下一篇 上一篇

摘要

极端采矿条件下的硬岩破碎可采用磨料水射流(AWJ)技术,这种技术能够在不产生粉尘的条件下有效切割难以机械加工的材料。这种技术还可用于爆破、本安和消防安全。就断裂力学而言,每一种可被破坏的材料均可被视为韧性或脆性材料。因此,需要找到一种无论使用AWJ 对何种材料进行切割都能精确预测其效率的方法。该问题可通过能量守恒法加以解决,它显示了材料去除量与AWJ 动能之间的比例。本文介绍了基于能量守恒法的预测方法,并提出如何达到最有效破坏水平的建议,以及关于涉及磨料流量与水流量、靶距和磨料颗粒粒径关系值的合理范围的建议。本文还提供了基于断裂力学的临时结构法确定材料破坏起始阈值条件的参数。

参考文献

[ 1 ] Huang L, Folkes J, Kinnell P, Shipway PH. Mechanisms of damage initiation in a titanium alloy subjected to water droplet impact during ultra-high pressure plain waterjet erosion. J Mater Process Technol 2012;212(9):1906–15. 链接1

[ 2 ] Kong MC, Axinte D, Voice W. Aspects of material removal mechanism in plain waterjet milling on gamma titanium aluminide. J Mater Process Technol 2010;210(3):573–84. 链接1

[ 3 ] Folkes J. Waterjet—an innovative tool for manufacturing. J Mater Process Technol 2009;209(20):6181–9. 链接1

[ 4 ] Wang J. Abrasive waterjet machining of engineering materials. Zurich: Trans Tech Publications, Ltd.; 2003.

[ 5 ] Albert M. The promise of waterjet technology for micromachining. Mod Mach Shop 2013;85(10):76–81.

[ 6 ] Brenner VA, Zhabin AB, Pushkarev AE, Shhegolevskii MM. Abrasive waterjet cutting of rocks. Moscow: Mining Book; 2003. Russian.

[ 7 ] Merzlyakov VG, Baftalovsky VE, Baydinov VN. On using hydraulic technology for mechanization of mining operations. Min Equip Electromech 2010;6:2–6. Russian.

[ 8 ] Merzlyakov VG, Baftalovsky VE. Development and creation of abrasive waterjet tools for cutting hard materials and estimation of rational parameters of the process. Min Equip Electromech 2008;4:27–31. Russian.

[ 9 ] Engin IC. A correlation for predicting the abrasive water jet cutting depth for natural stones. S Afr J Sci 2012;108(9–10). Art.#692. 链接1

[10] Hashish M, Steele DE, Bothell DH. Machining with super-pressure (690 MPa) waterjets. Int J Mach Tool Manuf 1997;37(4):465–79. 链接1

[11] Susuzlu T, Hoogstrate AM, Karpuschewski B. Initial research on the ultra-high pressure waterjet up to 700 MPa. J Mater Process Technol 2004;149(1– 3):30–6. 链接1

[12] Aydin G, Karakurt I, Aydiner K. Prediction of the cut depth of granitic rocks machined by abrasive waterjet (AWJ). Rock Mech Rock Eng 2013;46 (5):1223–35. 链接1

[13] Karakurt I, Aydin G, Aydiner K. An experimental study on the depth of cut of granite in abrasive waterjet cutting. Mater Manuf Process 2012;27(5):538–44. 链接1

[14] Sitarama Chakravarthy P, Ramesh Babu N. A new approach for selection of optimal process parameters in abrasive water jet cutting. Mater Manuf Process 1999;14(4):581–600. 链接1

[15] Kim JG, Song JJ, Han SS, Lee CI. Slotting of concrete and rock using an abrasive suspension waterjet system. KSCE J Civ Eng 2012;16(4):571–8. 链接1

[16] Lu Y, Tang J, Ge Z, Xia B, Liu Y. Hard rock drilling technique with abrasive water jet assistance. Int J Rock Mech Min Sci 2013;60:47–56. 链接1

[17] Hashish M. The waterjet as a tool. Proceedings of the 14th international conference on jetting technology; 1998 Sep 21-23; Brugge, Belgium. London: Professional Engineering Publishing; 1998. p. 1–14.

[18] Evstifeev AD, Gruzdkov AA, Petrov YV. Dependence of the type of fracture on temperature and strain rate. Tech Phys 2013;58(7):989–93. 链接1

[19] Blickwedel H, Guo NS, Haferkamp H, Louis H. Prediction of abrasive jet cutting performance and quality. In: Saunders D, editor. Jet cutting technology: proceedings of the 10th international symposium; 1990 Oct 31-Nov 2; Amsterdam, the Netherlands. London: Elsevier Applied Science; 1990. p. 163–79.

[20] Chen L, Siores E, Wong WCK. Kerf characteristics in abrasive waterjet cutting of ceramic materials. Int J Mach Tool Manuf 1996;36(11):1201–6. 链接1

[21] Wang J. Abrasive waterjet machining of polymer matrix composites—cutting performance, erosive process and predictive models. Int J Adv Manuf Technol 1999;15(10):757–68. 链接1

[22] Ives LK, Ruff AW. Transmission and scanning electron microscopy studies of deformation at erosion impact sites. Wear 1978;46(1):149–62. 链接1

[23] Hockey BJ, Wiederhorn SM, Johnson H. Erosion of brittle materials by solid particle impact. In: Bradt RC, Hasselman DPH, Lange FF, editors. Fracture mechanics of ceramics, volume 3: flaws and testing. New York: Plenum Press; 1978. p. 379–402. 链接1

[24] Sheldon GL, Finnie I. On the ductile behavior of nominally brittle materials during erosive cutting. J Eng Ind 1966;88(4):387–92. 链接1

[25] Zhabin AB, Averin EA. Improvement of the method for the cut depth calculation when cutting by hydroabrasive instrument. Min Equip Electromech 2014;11:24–9. Russian.

[26] Yazici S. Abrasive jet cutting and drilling of rock [dissertation]. Rolla: University of Missouri; 1989.

[27] Faber K, Oweinah H. Influence of process parameters on blasting performance with the abrasive jet. In: Saunders D, editor. Jet cutting technology: proceedings of the 10th international symposium; 1990 Oct 31-Nov 2; Amsterdam, the Netherlands. London: Elsevier Applied Science; 1990. p. 365–82. 链接1

[28] Chalmers EJ. Effect of parameter selection on abrasive waterjet performance. In: Labus TJ, editor. Proceedings of the 6th American water jet conference; 1991 Aug 24-27; Houston, TX, USA. St. Louis: Water Jet Technology Association; 1991. p. 345–54.

[29] Laurinat A, Louis H, Meier-Wiechert GA. Model for milling with abrasive water jets. In: Hashish M, editor. Proceedings of the 7th American water jet conference; 1993 Aug 28-31; Seattle, WA, USA. St. Louis: Water Jet Technology Association; 1993. p. 119–39.

[30] Hashish M. Pressure effects in abrasive-waterjet (AWJ) machining. J Eng Mater Technol 1989;111(3):221–8. 链接1

[31] Zhabin AB, Averin EA. Systematization of parameter of rocks erosion destruction with abrasive waterjet. Min Equip Electromech 2015;4:41–4. Russian.

[32] Hessling M. Recent examination relating to the effects of the abrasive material, operating parameters and rock properties on the depth of cut obtainable with abrasive high presser water jets when cutting rock. In: Wood PA, editor. Symposium proceedings: 9th international symposium on jet cutting technology; 1988 Oct 4–6; Sendai, Japan. Cranfield: BHR Group; 1988. p. 357–76.

[33] Hashish M. Aspects of abrasive-waterjet performance optimization. In: Proceedings of the 8th international symposium on jet cutting technology; 1986 Sep 9–11; Durham, UK. p. 297–308.

[34] Homma H, Shockey DA, Murayama Y. Response of cracks in structural materials to short pulse loads. J Mech Phys Solids 1983;31(3):261–79. 链接1

[35] Ravi-Chandar K, Knauss WG. An experimental investigation into dynamic fracture: I. Crack initiation and arrest. Int J Fract 1984;25(4):247–62. 链接1

[36] Ravi-Chandar K, Knauss WG. An experimental investigation into dynamic fracture: III. On steady-state crack propagation and crack branching. Int J Fract 1984;26(2):141–54. 链接1

[37] Kazarinov NA, Bratov VA, Petrov YV, Fedorovsky GD. Evaluation of fracture incubation time from quasistatic tensile strength experiment. Mater Phys Mech 2014;19:16–24. 链接1

[38] Petrov YV, Morozov NF. On the modeling of fracture of brittle solids. J Appl Mech 1994;61(3):710–2. 链接1

[39] Petrov YV. On the incubation stage of fracture and structural transformations in continuous media under pulse energy injection. Mech Solids 2007;42 (5):692–9. 链接1

[40] Bratov V. Incubation time fracture criterion for FEM simulations. Acta Mech Sin 2011;27(4):541–9. 链接1

[41] Gorbushin NA, Volkov GA, Petrov YV. On the effect of the geometrical shape of a particle on threshold energy in erosion damage. Tech Phys 2013;58 (3):388–92. 链接1

[42] Zhabin AB, Averin EA. Elementary method for calculation of hard rocks erosion caused by abrasive waterjets. Min Equip Electromech 2015;5:44–8. Russian.

[43] Cherepanov GP. Crack propagation in continuous media. J Appl Math Mech 1967;31(3):503–12.

[44] Rice JR. A path independent integral and the approximate analysis of strain concentration by notches and cracks. J Appl Mech 1968;35(2):379–86. 链接1

相关研究