期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2018年 第4卷 第5期 doi: 10.1016/j.eng.2018.08.001

氧化还原氧化裂解石脑油制乙烯的过程模拟与分析

a Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA
b School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China

收稿日期: 2017-12-12 修回日期: 2018-01-26 录用日期: 2018-08-03 发布日期: 2018-08-10

下一篇 上一篇

摘要

石脑油热裂解制乙烯(C2H4)是一种能源密集型工艺(每吨C2H4 高达40 GJ 热量),会形成大量焦炭和氮氧化物(NOx),而且每产生1 kg C2H4 就有1.8~2 kg 的二氧化碳(CO2)排放量。我们提出了石脑油氧化还原氧化裂解(redox oxy-cracking,ROC)的替代方法。在该两步法中,石脑油裂解产生的氢气(H2)首先在氧化还原催化剂的作用下与其晶格氧选择性地燃烧。随后氧化还原催化剂被空气再次氧化并释放热量,以满足裂解反应对热量的需求。这个强化过程减少了附加能量的消耗以及CO2 和NOx 的排放。此外,由于H2 的选择性燃烧,C2H4 和丙烯(C3H6)的形成可以被增强。在本研究中,我们基于最近开发氧化还原催化剂的实验数据,使用ASPEN Plus® 模拟ROC工艺。与传统的石脑油裂解相比,ROC 工艺可将能耗和CO2 排放量降低52%。该工艺的上游部分少消耗约67% 的能量,同时每千克石脑油原料多产生28% 的C2H4 和C3H6

补充材料

图片

图1

图2

图3

图4

图5

图6

图7

图8

参考文献

[ 1 ] Moreira JV. Steam cracking: kinetics and feed characterization [dissertation]. Lisbon: Instituto Superior Técnico; 2015.

[ 2 ] Zimmermann H, Walzl R. Ethylene. Ullmann’s encyclopedia of industrial chemistry. Weinheim: Wiley-VCH; 2000. 链接1

[ 3 ] Ren T, Patel M, Blok K. Olefins from conventional and heavy feedstocks: energy use in steam cracking and alternative processes. Energy 2006;31(4):425–51. 链接1

[ 4 ] Shahrokhi M, Masoumi ME, Sadrameli SM, Towfighi J. Simulation and optimization of a naphtha thermal cracking pilot plant. Iran J Chem Chem Eng 2003;22:27–35. 链接1

[ 5 ] Masoumi M, Shahrokhi M, Sadrameli M, Towfighi J. Modeling and control of a naphtha thermal cracking pilot plant. Ind Eng Chem Res 2006;45(10):3574–82. 链接1

[ 6 ] Gärtner CA, van Veen AC, Lercher JA. Oxidative dehydrogenation of ethane: common principles and mechanistic aspects. ChemCatChem 2013;5 (11):3196–217. 链接1

[ 7 ] Cavani F, Ballarini N, Cericola A. Oxidative dehydrogenation of ethane and propane: how far from commercial implementation? Catal Today 2007;127 (1):113–31. 链接1

[ 8 ] Boyadjian C, Lefferts L, Seshan K. Catalytic oxidative cracking of hexane as a route to olefins. Appl Catal Gen 2010;2(372):167–74. 链接1

[ 9 ] Boyadjian C, Ag˘ıral A, Gardeniers JGE, Lefferts L, Seshan K. Oxidative conversion of hexane to olefins-influence of plasma and catalyst on reaction pathways. Plasma Chem Plasma Process 2011;31(2):291–306.

[10] Boyadjian CA. Oxidative cracking of n-hexane: a catalytic pathway to olefins [dissertation]. Enschede: University of Twente; 2010. 链接1

[11] Elbadawi AH, Khan MY, Quddus MR, Razzak SA, Hossain MM. Kinetics of oxidative cracking of n-hexane to olefins over VOx/Ce-Al2O3 under gas phase oxygen-free environment. AIChE J 2017;63(1):130–8. 链接1

[12] Bhasin MM, McCain JH, Vora BV, Imai T, Pujadó PR. Dehydrogenation and oxydehydrogenation of paraffins to olefins. Appl Catal Gen 2001;221 (1):397–419. 链接1

[13] De Graaf EA, Rothenberg G, Kooyman PJ, Andreini A, Bliek A. Pt0.02Sn0.003Mg0.06 on c-alumina: a stable catalyst for oxidative dehydrogenation of ethane. Appl Catal Gen 2005;278(2):187–94. 链接1

[14] Ballarini N, Cavani F, Cericola A, Cortelli C, Ferrari M, Trifirò F, et al. Supported vanadium oxide-based catalysts for the oxidehydrogenation of propane under cyclic conditions. Catal Today 2004;91–92:99–104. 链接1

[15] Contractor RM, Bergna HE, Horowitz HS, Blackstone CM, Malone B, Torardi CC, et al. Butane oxidation to maleic anhydride over vanadium phosphate catalysts. Catal Today 1987;1(1):49–58. 链接1

[16] Neal LM, Yusuf S, Sofranko JA, Li F. Alkali-doped manganese oxides as redox catalysts for oxidative dehydrogenation of ethane. In: Proceedings of the 250th ACS National Meeting & Exposition; 2015 Aug 16–20; Boston, MA, USA; 2015.

[17] Haribal VP, Neal LM, Li F. Oxidative dehydrogenation of ethane under a cyclic redox scheme—process simulations and analysis. Energy 2017;119:1024–35. 链接1

[18] Yusuf S, Neal LM, Li F. Effect of promoters on manganese-containing mixed metal oxides for oxidative dehydrogenation of ethane via a cyclic redox scheme. ACS Catal 2017;7(8):5163–73. 链接1

[19] Gao Y, Neal LM, Li F. Li-promoted LaxSr2–xFeO4–d core–shell redox catalysts for oxidative dehydrogenation of ethane under a cyclic redox scheme. ACS Catal 2016;6(11):7293–302. 链接1

[20] Li F, Neal LM, Zhang J, inventors; North Carolina State University, assignee. Redox catalysts for the oxidative cracking of light hydrocarbons, methods of making, and methods of use thereof. PCT patent WO 2018049389. 2018 Mar 15.

[21] Schefflan R. Teach yourself the basics of aspen plus. Hoboken: American Institute of Chemical Engineers; 2011.

[22] Moulijn JA, van Diepen A, Makkee M. Chemical process technology. 2nd ed. Chichester: John Wiley & Sons Inc.; 2013.

[23] Rochelle GT. Amine scrubbing for CO2 capture. Science 2009;325 (5948):1652–4. 链接1

[24] Yan M. Simulation and optimization of an ethylene plant [dissertation]. Lobbock: Texas Tech University; 2000. 链接1

[25] Ball M, Basile A, Veziroglu TN. Compendium of hydrogen energy: hydrogen use, safety and the hydrogen economy. Sawston: Woodhead Publishing; 2015.

[26] Hall SM. Rules of thumb for chemical engineers. 5th ed. Oxford: Butterworth-Heinemann; 2012.

[27] Battiston GC, Dalloro L, Tauszik GR. Performance and aging of catalysts for the selective hydrogenation of acetylene: a micropilot-plant study. Appl Catal 1982;2(1):1–17. 链接1

[28] Hassan G, Pourkashanian M, Ingham D, Ma L, Newman P, Odedra A. Predictions of CO and NOx emissions from steam cracking furnaces using GRI2.11 detailed reaction mechanism—a CFD investigation. Comput Chem Eng 2013;58:68–83 链接1

相关研究