期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2019年 第5卷 第2期 doi: 10.1016/j.eng.2018.11.024

高性能纳米贝氏体轴承用钢发展与展望

a State Key Laboratory of Metastable Materials Science and Technology, Yanshan University,
Qinhuangdao 066004, China

b National Engineering Research Center For Equipment and Technology of Cold Strip Rolling, Yanshan University, Qinhuangdao
066004, China

收稿日期: 2018-06-29 修回日期: 2018-10-09 录用日期: 2018-11-08 发布日期: 2019-02-21

下一篇 上一篇

摘要

轴承是几乎所有机械设备中最关键的零部件,能确保设备平稳运行,这对于高端装备尤为重要,如高速铁路客车和盾构机械等。随着技术的快速发展,对轴承质量的要求不断提高。轴承的制造水平直接反映一个国家钢铁冶金以及机械制造的水平。轴承钢的性能是决定轴承质量的关键因素。因此,开发更优异性能的轴承钢是材料研究领域与机械制造行业所共同追求的目标。国内外著名的轴承制造企业竞相开发新型轴承用钢。纳米贝氏体轴承钢是一类新开发的轴承钢,不仅具有高的强韧性,同时也表现出优异的耐磨性与抗滚动接触疲劳性能。近年来,中国学者在纳米贝氏体轴承钢方面的研究成果显著推动了这一领域的发展。在中国,纳米贝氏体轴承钢最先被用来制造大功率风电主轴轴承及其他重载轴承,表现出了优异的性能。因此,纳米贝氏体轴承钢和相关热处理技术首次被纳入国家标准和行业标准中。轴承行业认为纳米贝氏体轴承钢的开发具有划时代的意义,并称这种轴承为“第二代贝氏体轴承”。本文详细综述了纳米贝氏体轴承钢的发展,包括其优点和不足,并提出了下一步的研究方向。

图片

图1

图2

图3

图4

图5

图6

图7

图8

图9

图10

图11

图12

参考文献

[ 1 ] Huo DM, Xiao BG. Current situation and development prospect of bearing steel production. Sichuan Metall 2015;37(1):61–4,70. Chinese. 链接1

[ 2 ] Jiao Y. We have to use others’ bearing on our own TBM. Sci Technol Daily 2018. Sect. 3:4. Chinese. 链接1

[ 3 ] SKF University Technology Centre [Internet]. Cambridge: University of Cambridge. Available from: https://www.maxwell.cam.ac.uk/maxwellcommunity/member-groups/skf-university-technology-centre.

[ 4 ] Caballero FG, Bhadeshia HKDH, Mawella KJA, Jones DG, Brown P. Very strong low temperature bainite. Mater Sci Technol 2002;18(3):279–84. 链接1

[ 5 ] Hirohide S. Bearing steels. Beijing: Metallurgical Industry Press; 2003. Chen HZ, translator. Chinese. 链接1

[ 6 ] Zhang ZQ, Wang YL. The application of bainite austempering technology in rolling mill bearing. Bearing 1998;2:24–8. 链接1

[ 7 ] Zhang GH, Zhang ZC, Wu KM. Progress of research on composition design and heat treatment process of high carbon chromium bearing steel. Special Steel 2017;36:9–13. Chinese. 链接1

[ 8 ] Bhadeshia HKDH. Steels for bearings. Prog Mater Sci 2012;57(2):268–435. 链接1

[ 9 ] Liu YZ, Jiang T. Austempering of GCr15 steel and its application in railway rolling bearing. Bearing 1994;9:32–6. Chinese. 链接1

[10] Zhang FC, Yang ZN, Lei JZ, Pang BT, Wang ML. Application progress of bainite steel in bearings. Bearing 2017;1:54–64. Chinese. 链接1

[11] Lu K, Lu L. Progress in mechanical properties of nanocrystalline meterials. Acta Metall Sin 2000;36(8):785–9. Chinese. 链接1

[12] Hu J, Shi YN, Sauvage X, Sha G, Lu K. Grain boundary stability governs hardening and softening in extremely fine nanograined metals. Science 2017;355(6331):1292–6. 链接1

[13] Zhou X, Li XY, Lu K. Enhanced thermal stability of nanograined metals below a critical grain size. Science 2018;360(6388):526–30. 链接1

[14] Zhang F, Feng X, Yang Z, Kang J, Wang T. Dislocation-twin boundary interactions induced nanocrystalline via SPD processing in bulk metals. Sci Rep 2015;5(1):8981. 链接1

[15] Liu XC, Zhang HW, Lu K. Strain-induced ultrahard and ultrastable nanolaminated structure in nickel. Science 2013;342(6156):337–40. 链接1

[16] Bhadeshia HKDH. The first bulk nanostructured metal. Sci Technol Adv Mater 2013;14(1):014202. 链接1

[17] Wang TS, Li XY, Zhang FC, Zheng YZ. Microstructures and mechanical properties of 60Si2CrVA steel by isothermal transformation at low temperature. Mater Sci Eng A 2006;438–440:1124–7. 链接1

[18] Zhang FC, Wang TS, Zhang P, Zheng CL, Lv B, Zhang M, et al. A novel method for the development of a low-temperature bainitic microstructure in the surface layer of low-carbon steel. Scr Mater 2008;59(3):294–6. 链接1

[19] Zhang P, Zhang FC, Yan ZG, Wang TS, Qian LH. Wear property of lowtemperature bainite in the surface layer of a low carbon steel. Wear 2011;271 (5–6):697–704. 链接1

[20] Zhang P, Zhang FC, Yan ZG, Wang TS, Qian LH. Rolling contact fatigue property of low-temperature bainite in surface layer of a low carbon steel. Mater Sci Forum 2011;675–677:585–8. 链接1

[21] Bhadeshia HKDH. Nanostructured bainite. P Roy Soc Lond A 2010;466:3–18. 链接1

[22] Solano-Alvarez W, Pickering EJ, Bhadeshia HKDH. Degradation of nanostructured bainitic steel under rolling contact fatigue. Mater Sci Eng A 2014;617:156–64. 链接1

[23] Zhang P, Zhang FC, Wang TS. Preparation and microstructure of hard bainite in surface layer of carburized 20CrMnMoAI steel. Acta Metall Sin 2011;47:1038–45. Chinese. 链接1

[24] Wang YH, Yang ZN, Zhang FC, Wu D. Microstructures and mechanical properties of surface and center of carburizing 23Cr2Ni2Si1Mo steel subjected to lowtemperature austempering. Mater Sci Eng A 2016;670:166–77. 链接1

[25] Yang ZN, Zhang FC, Ji YL, Wang YH, Lv B, Wang M. Notably improved mechanical properties via introducing a short austempering treatment on lowcarbon martensite steel. Mater Sci Eng A 2016;673:524–9. 链接1

[26] Wang YH. Chemical component design, microstructure and properties control of nanobainitic steels used for high-power wind power bearing [dissertation]. Qinhuangdao: Yanshan University; 2017. Chinese. 链接1

[27] Yang ZN, Zhang FC. A kind of bearing steel with high impact resistance and its heat treatment process. China patent CN 201610280071.0. 2016 Apr 29. Chinese.

[28] Wasliluk K, Skolek E, S´witnicki W. Microstructure and properties of surface layer of carburized 38CrAlMo6-10 steel subjected to nanostructurization by a heat treatment process. Arch Metall Mater 2014;59(4):1685–90. 链接1

[29] Skolek E, Wasiak K, S´wia˛ tnicki WA. Structure and properties of the carburized surface layer on 35CrSiMn5-5-4 steel after nanostructurization treatment. Mater Tehnol 2015;49(6):933–9. 链接1

[30] Zhang FC, Wang TS, Yang ZN, Wang YH, Kang J, Zheng YZ. The overall hard bainite bearing steel and its manufacturing method. China patent CN 201210399526.2. 2013 Mar 6. Chinese.

[31] Zhao J. Microstructure and mechanical properties of nanostructure bainite used for bearings [dissertation]. Qinhuangdao, Chinese: Yanshan University; 2013. Chinese. 链接1

[32] Zhao J, Zhao T, Hou CS, Zhang FC, Wang TS. Improving impact toughness of high-C-Cr bearing steel by Si-Mo alloying and low-temperature austempering. Mater Des 2015;86:215–20. 链接1

[33] Liu HJ, Sun JJ, Jiang T, Guo S, Liu Y. Improved rolling contact fatigue life for an ultrahigh-carbon steel with nanobainitic microstructure. Scr Mater 2014;90– 91:7–20. 链接1

[34] Yan ZG, Zhang FC, Zhang P, Zheng CL, Liu FC, Zhang M. Influence of aluminium content on carburization dynamics and kinetics of bainite transformation in steel. Mater Mech Eng 2012;36:31–5. 链接1

[35] Hu F, Wu KM, Zheng H. Influence of Co and Al on bainitic transformation in super bainitic steels. Steel Res Int 2013;84:1060–5. 链接1

[36] Li YG, Chen C, Zhang FC. Al and Si influences on hydrogen embrittlement of carbide-free bainitic steel. Adv Mater Sci Eng 2013;11:382060. 链接1

[37] Lv B, Zhang ZM, Yang ZN, Zhang FC, Zheng CL, He YR. A higher corrosion resistance for a bainitic steel with Al instead of Si. Mater Lett 2016;173:95–7. 链接1

[38] Hollox GE, Hobbs RA, Hampshire JM. Lower bainite bearings for adverse environments. Wear 1981;68(2):229–40. 链接1

[39] General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China. GB/T 3203—2016: Carburizing steels for bearing. Chinese standard. Beijing: Standards Press of China; 2017. 链接1

[40] Ministry of Industry and Information Technology of the People’s Republic of China. YB/T 4572—2016: Bearing steel rolling ring and blank. Chinese industry standard for black metallurgy. Beijing: Metallurgical Industry Press; 2017. 链接1

[41] General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China. GB/T 34891—2017: Rolling bearings—parts made from high-carbon chromium bearing steels—specifications for heat treatment. Chinese standard. Beijing: Standards Press of China; 2017. 链接1

[42] Zhao J, Hou CS, Zhao G, Zhao T, Zhang FC, Wang TS. Microstructures and mechanical properties of bearing steels modified for preparing nanostructured bainite. J Mater Eng Perform 2016;25(10):4249–55. 链接1

[43] Zhao J, Wang TS, Lv B, Zhang FC. Microstructures and mechanical properties of a modified high-C-Cr bearing steel with nano-scaled bainite. Mater Sci Eng A 2015;628:327–31. 链接1

[44] Garcia-Mateo C, Caballero FG. Ultra-high-strength bainitic steels. ISIJ Int 2005;45(11):1736–40. 链接1

[45] Fielding LCD, Jones NG, Wslsh J, Van Boxel S, Blackmur MS, Lee PD, et al. Synchrotron analysis of toughness anomalies in nanostructured bainite. Acta Mater 2016;105:52–8. 链接1

[46] Miab SA, Avishan B, Yazdani S. Wear resistance of two nanostructural bainitic steels with different amounts of Mn and Ni. Acta Metall Sin 2016;29:587–94. 链接1

[47] Leiro A, Vuorinen E, Sundin KG, Prakash B, Sourmail T, Smanio V, et al. Wear of nano-structured carbide-free bainitic steels under dry rolling-sliding conditions. Wear 2013;298–299:42–7. 链接1

[48] Wang Y, Zhang F, Yang Z, Lv B, Zheng C. Rolling contact fatigue performances of carburized and high-C nanostructured bainitic steels. Materials 2016;9(12):960. 链接1

[49] Caballero FG, Bhadeshia HKDH, Mawella KJA, Jones DG, Brown P. Design of high strength bainitic steels: part 2. Mater Sci Technol 2001;17(5):517–22. 链接1

[50] Zhang P. Microstructure and mechanical properties of nanostructure bainite in surface layer of alloy steel [dissertation]. Qinhuangdao: Yanshan University; 2011. Chinese. 链接1

[51] Zhu KY, Mager C, Huang MX. Effect of substitution of Si by Al on the microstructure and mechanical properties of bainitic transformation-induced plasticity steels. J Mater Sci Technol 2017;33(12):1475–86. 链接1

[52] Garcia-Mateo C, Caballero FG, Bhadeshia HKDH. Acceleration of lowtemperature bainite. ISIJ Int 2003;43(11):1821–5. 链接1

[53] Gong W, Tomota Y, Harjo S, Su YH, Aizawa K. Effect of prior martensite on bainite transformation in nanobainite steel. Acta Mater 2015;85:243–9. 链接1

[54] Chu CH, Qin YM, Li XM, Yang ZN, Zhang FC, Guo CH, et al. Effect of two-step austempering process on transformation kinetics of nanostructured bainitic steel. Materials 2019;12(1):166. 链接1

[55] Hase K, Garcia-Mateo C, Bhadeshia HKDH. Bainite formation influenced by large stress. Mater Sci Technol 2004;20(12):1499–505. 链接1

[56] Shipwway PH, Bhadeshia HKDH. The effect of small stress on the kinetics of the bainite transformation. Mater Sci Eng A 1995;201(1–2):143–9. 链接1

[57] Singh SB, Bhadeshia HKDH. Estimation of bainite plate-thickness in low-alloy steels. Mater Sci Eng A 1998;245(1):72–9. 链接1

[58] Yang ZN, Chu CH, Jiang F, Qin YM, Long XY, Wang SL, et al. Accelerating nanobainite transformation based on a new constructed microstructural predicting model. Mater Sci Eng A 2019;748:16–20. 链接1

[59] Garcia-Mateo C, Cornide J, Capdevila C, Caballero FG. Garcia de Andres C. Influence of V precipitates on acicular ferrite transformation part 2: transformation kinetics. ISIJ Int 2008;48(9):1276–9. 链接1

[60] He BB, Xu W, Huang MX. Effect of boron on bainitic transformation kinetics after ausforming in low carbon steels. J Mater Sci Technol 2017;33 (12):1494–503. 链接1

[61] Zhang CY, Chen H, Zhu KY, Zhang C, Yang ZG. Effect of Mo addition on the transformation stasis phenomenon during the isothermal formation of bainitic ferrite. Metall Mater Trans A 2016;47A(12):5670–4. 链接1

[62] Yang ZN, Ji YL, Zhang FC, Zhang M, Nawaz B, Zheng CL. Microstructural evolution and performance change of a carburized nanostructured bainitic bearing steel during rolling contact fatigue process. Mater Sci Eng A 2018;725:98–107. 链接1

相关研究