期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2019年 第5卷 第4期 doi: 10.1016/j.eng.2019.03.009

生物三维打印——组织器官制造新途径

a State Key Laboratory of Fluid Power & Mechatronic Systems, Zhejiang University, Hangzhou 310058, China
b School of Mechanical Engineering, Zhejiang University, Hangzhou 310058, China
c Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford OX3 7DQ, UK

# These authors contributed equally to this work.

收稿日期: 2018-10-12 修回日期: 2019-03-13 录用日期: 2019-03-26 发布日期: 2019-06-03

下一篇 上一篇

摘要

生物三维打印是一种快速发展的技术,已广泛用于组织工程、疾病研究和药物筛选。它以逐层方式沉积各种类型的生物材料、细胞和生物分子,并能够精确控制它们的空间分布。该技术有望在将来解决器官短缺问题。本文首先介绍了三类生物三维打印策略:喷墨打印、挤出打印和基于光的打印。其次,讨论了包括生物材料和细胞在内的“生物墨水”。再次,系统地总结了生物三维打印在制造实体结构或中空结构的含细胞组织器官的最新进展,包括软骨、硬骨、皮肤、肌肉和血管网络等。随后,综述了利用生物三维打印技术制造药物开发和毒性测试的器官芯片的进展。最后,讨论了当前本领域的主要挑战并展望了未来生物三维打印研究的发展方向。

图片

图1

图2

图3

图4

图5

图6

图7

图8

图9

图10

参考文献

[ 1 ] Abouna GM. Organ shortage crisis: problems and possible solutions. Transplant Proc 2008;40(1):34–8. 链接1

[ 2 ] Zhang B, Luo Y, Ma L, Gao L, Li Y, Xue Q, et al. 3D bioprinting: an emerging technology full of opportunities and challenges. Bio-Des Manuf 2018;1 (1):2–13. 链接1

[ 3 ] Ozbolat IT, Yu Y. Bioprinting toward organ fabrication: challenges and future trends. IEEE Trans Biomed Eng 2013;60(3):691–9. 链接1

[ 4 ] An N, Shi Y, Jiang Y, Zhao L. Organ donation in China: the major progress and the continuing problem. J Biomed Res 2016;30(2):81–2. 链接1

[ 5 ] Langer R, Vacanti JP. Tissue engineering. Science 1993;260(5110):920–6. 链接1

[ 6 ] Oberpenning F, Meng J, Yoo JJ, Atala A. De novo reconstitution of a functional mammalian urinary bladder by tissue engineering. Nat Biotechnol 1999;17 (2):149–55. 链接1

[ 7 ] Jang J, Yi HG, Cho DW. 3D printed tissue models: present and future. ACS Biomater Sci Eng 2016;2(10):1722–31. 链接1

[ 8 ] Huh D, Matthews BD, Mammoto A, Montoya-Zavala M, Hsin HY, Ingber DE. Reconstituting organ-level lung functions on a chip. Science 2010;328 (5986):1662–8. 链接1

[ 9 ] Morimoto Y, Onoe H, Takeuchi S. Biohybrid robot powered by an antagonistic pair of skeletal muscle tissues. Sci Rob 2018;3(18):eaat4440. 链接1

[10] Choi YJ, Kim TG, Jeong J, Yi HG, Park JW, Hwang W, et al. 3D cell printing of functional skeletal muscle constructs using skeletal muscle-derived bioink. Adv Healthc Mater 2016;5(20):2636–45. 链接1

[11] Cubo N, Garcia M, Del Cañizo JF, Velasco D, Jorcano JL. 3D bioprinting of functional human skin: production and in vivo analysis. Biofabrication 2016;9 (1):015006. 链接1

[12] Kang HW, Lee SJ, Ko IK, Kengla C, Yoo JJ, Atala A. A 3D bioprinting system to produce human-scale tissue constructs with structural integrity. Nat Biotechnol 2016;34(3):312–9. 链接1

[13] Dolati F, Yu Y, Zhang Y, Jesus AMD, Sander EA, Ozbolat IT. In vitro evaluation of carbon-nanotube-reinforced bioprintable vascular conduits. Nanotechnology 2014;25(14):145101. 链接1

[14] Kolesky DB, Homan KA, Skylar-Scott MA, Lewis JA. Three-dimensional bioprinting of thick vascularized tissues. Proc Natl Acad Sci USA 2016;113 (12):3179–84. 链接1

[15] Norotte C, Marga FS, Niklason LE, Forgacs G. Scaffold-free vascular tissue engineering using bioprinting. Biomaterials 2009;30(30):5910–7. 链接1

[16] Zhu W, Qu X, Zhu J, Ma X, Patel S, Liu J, et al. Direct 3D bioprinting of prevascularized tissue constructs with complex microarchitecture. Biomaterials 2017;124:106–15. 链接1

[17] Fu F, Shang L, Chen Z, Yu Y, Zhao Y. Bioinspired living structural color hydrogels. Sci Rob 2018;3(16):eaar8580. 链接1

[18] Bhise NS, Manoharan V, Massa S, Tamayol A, Ghaderi M, Miscuglio M, et al. A liver-on-a-chip platform with bioprinted hepatic spheroids. Biofabrication 2016;8(1):014101. 链接1

[19] Lee H, Cho DW. One-step fabrication of an organ-on-a-chip with spatial heterogeneity using a 3D bioprinting technology. Lab Chip 2016;16 (14):2618–25. 链接1

[20] Lind JU, Busbee TA, Valentine AD, Pasqualini FS, Yuan H, Yadid M, et al. Instrumented cardiac microphysiological devices via multimaterial threedimensional printing. Nat Mater 2017;16(3):303–8. 链接1

[21] Barnatt C. Future visions: bioprinter [Internet]. ExplainingTheFuture.com; 2011 [cited 2017 Jun 6]. Available from: http:// www.explainingthefuture.com/visions/vision_bioprinter.html. 链接1

[22] Murphy SV, Atala A. 3D bioprinting of tissues and organs. Nat Biotechnol 2014;32(8):773–85. 链接1

[23] Zhang YS, Yue K, Aleman J, Moghaddam KM, Bakht SM, Yang J, et al. 3D bioprinting for tissue and organ fabrication. Ann Biomed Eng 2017;45 (1):148–63. 链接1

[24] Gao G, Yonezawa T, Hubbell K, Dai G, Cui X. Inkjet-bioprinted acrylated peptides and PEG hydrogel with human mesenchymal stem cells promoterobust bone and cartilage formation with minimal printhead clogging. Biotechnol J 2015;10(10):1568–77. 链接1

[25] Skardal A, Mack D, Kapetanovic E, Atala A, Jackson JD, Yoo J, et al. Bioprinted amniotic fluid-derived stem cells accelerate healing of large skin wounds. Stem Cells Transl Med 2012;1(11):792–802. 链接1

[26] Ma X, Qu X, Zhu W, Li YS, Yuan S, Zhang H, et al. Deterministically patterned biomimetic human iPSC-derived hepatic model via rapid 3D bioprinting. Proc Natl Acad Sci USA 2016;113(8):2206–11. 链接1

[27] Guvendiren M, Molde J, Soares RMD, Kohn J. Designing biomaterials for 3D printing. ACS Biomater Sci Eng 2016;2(10):1679–93. 链接1

[28] Soman P, Chung PH, Zhang AP, Chen S. Digital microfabrication of userdefined 3D microstructures in cell-laden hydrogels. Biotechnol Bioeng 2013;110(11):3038–47. 链接1

[29] Obata K, El-Tamer A, Koch L, Hinze U, Chichkov BN. High-aspect 3D twophoton polymerization structuring with widened objective working range (WOW-2PP). Light Sci Appl 2013;2:e116. 链接1

[30] Cui X, Breitenkamp K, Finn MG, Lotz M, D’Lima DD. Direct human cartilage repair using three-dimensional bioprinting technology. Tissue Eng Part A 2012;18(11–12):1304–12. 链接1

[31] Lee VK, Kim DY, Ngo H, Lee Y, Seo L, Yoo SS, et al. Creating perfused functional vascular channels using 3D bio-printing technology. Biomaterials 2014;35 (28):8092–102. 链接1

[32] Jia W, Gungor-Ozkerim PS, Zhang YS, Yue K, Zhu K, Liu W, et al. Direct 3D bioprinting of perfusable vascular constructs using a blend bioink. Biomaterials 2016;106:58–68. 链接1

[33] Michael S, Sorg H, Peck CT, Koch L, Deiwick A, Chichkov B, et al. Tissue engineered skin substitutes created by laser-assisted bioprinting form skinlike structures in the dorsal skin fold chamber in mice. PLoS One 2013;8(3): e57741. 链接1

[34] Gao Q, He Y, Fu J, Qiu J, Jin Y. Fabrication of shape controllable alginate microparticles based on drop-on-demand jetting. J Sol-Gel Sci Technol 2016;77(3):610–9. 链接1

[35] Cui X, Boland T. Human microvasculature fabrication using thermal inkjet printing technology. Biomaterials 2009;30(31):6221–7. 链接1

[36] Wilson Jr WC, Boland T. Cell and organ printing 1: protein and cell printers. Anat Rec A Discov Mol Cell Evol Biol 2003;272A(2):491–6. 链接1

[37] Xu T, Kincaid H, Atala A, Yoo JJ. High-throughput production of single-cell microparticles using an inkjet printing technology. J Manuf Sci Eng 2008;130 (2):021017. 链接1

[38] Wang Y, Li X, Li C, Yang M, Wei Q. Binder droplet impact mechanism on a hydroxyapatite microsphere surface in 3D printing of bone scaffolds. J Mater Sci 2015;50(14):5014–23. 链接1

[39] Brunello G, Sivolella S, Meneghello R, Ferroni L, Gardin C, Piattelli A, et al. Powder-based 3D printing for bone tissue engineering. Biotechnol Adv 2016;34(5):740–53. 链接1

[40] Lee VK, Lanzi AM, Ngo H, Yoo SS, Vincent PA, Dai G. Generation of multi-scale vascular network system within 3D hydrogel using 3D bio-printing technology. Cell Mol Bioeng 2014;7(3):460–72. 链接1

[41] Mandrycky C, Wang Z, Kim K, Kim DH. 3D bioprinting for engineering complex tissues. Biotechnol Adv 2016;34(4):422–34. 链接1

[42] Skardal A, Atala A. Biomaterials for integration with 3D bioprinting. Ann Biomed Eng 2015;43(3):730–46. 链接1

[43] Merceron TK, Burt M, Seol YJ, Kang HW, Lee SJ, Yoo JJ, et al. A 3D bioprinted complex structure for engineering the muscle-tendon unit. Biofabrication 2015;7(3):035003. 链接1

[44] Ozbolat IT, Chen H, Yu Y. Development of ‘multi-arm bioprinter’ for hybrid biofabrication of tissue engineering constructs. Robot Comput Integr Manuf 2014;30(3):295–304. 链接1

[45] Gao Q, He Y, Fu JZ, Liu A, Ma L. Coaxial nozzle-assisted 3D bioprinting with built-in microchannels for nutrients delivery. Biomaterials 2015; 61:203–15. 链接1

[46] Yu Y, Moncal KK, Li J, Peng W, Rivero I, Martin JA, et al. Three-dimensional bioprinting using self-assembling scalable scaffold-free ‘‘tissue strands” as a new bioink. Sci Rep 2016;6(1):28714. 链接1

[47] Daly AC, Critchley SE, Rencsok EM, Kelly DJ. A comparison of different bioinks for 3D bioprinting of fibrocartilage and hyaline cartilage. Biofabrication 2016;8(4):045002. 链接1

[48] Kinstlinger IS, Miller JS. 3D-printed fluidic networks as vasculature for engineered tissue. Lab Chip 2016;16(11):2025–43. 链接1

[49] Jian H, Wang M, Wang S, Wang A, Bai S. 3D bioprinting for cell culture and tissue fabrication. Bio-Des Manuf 2018;1(1):45–61. 链接1

[50] Warner J, Soman P, Zhu W, Tom M, Chen S. Design and 3D printing of hydrogel scaffolds with fractal geometries. ACS Biomater Sci Eng 2016;2 (10):1763–70. 链接1

[51] Koch L, Deiwick A, Schlie S, Michael S, Gruene M, Coger V, et al. Skin tissue generation by laser cell printing. Biotechnol Bioeng 2012;109(7):1855–63. 链接1

[52] Koch L, Brandt O, Deiwick A, Chichkov B. Laser assisted bioprinting at different wavelengths and pulse durations with a metal dynamic release layer: a parametric study. Int J Bioprint 2017;3(1). 链接1

[53] Hribar KC, Soman P, Warner J, Chung P, Chen S. Light-assisted direct-write of 3D functional biomaterials. Lab Chip 2014;14(2):268–75. 链接1

[54] Nguyen AK, Narayan RJ. Two-photon polymerization for biological applications. Mater Today 2017;20(6):314–22. 链接1

[55] Mandt D, Gruber P, Markovic M, Tromayer M, Rothbauer M, Krayz SRA, et al. Fabrication of placental barrier structures within a microfluidic device utilizing two-photon polymerization. Int J Bioprint 2018;4(2). 链接1

[56] Gao L, Kupfer ME, Jung JP, Yang L, Zhang P, Da Sie Y, et al. Myocardial tissue engineering with cells derived from human-induced pluripotent stem cells and a native-like, high-resolution, three-dimensionally printed scaffold. Circ Res 2017;120(8):1318–25. 链接1

[57] Hospodiuk M, Dey M, Sosnoski D, Ozbolat IT. The bioink: a comprehensive review on bioprintable materials. Biotechnol Adv 2017;35(2):217–39. 链接1

[58] Hsieh FY, Lin HH, Hsu SH. 3D bioprinting of neural stem cell-laden thermoresponsive biodegradable polyurethane hydrogel and potential in central nervous system repair. Biomaterials 2015;71:48–57. 链接1

[59] Rhee S, Puetzer JL, Mason BN, Reinhart-King CA, Bonassar LJ. 3D bioprinting of spatially heterogeneous collagen constructs for cartilage tissue engineering. ACS Biomater Sci Eng 2016;2(10):1800–5. 链接1

[60] Hung KC, Tseng CS, Dai LG, Hsu SH. Water-based polyurethane 3D printed scaffolds with controlled release function for customized cartilage tissue engineering. Biomaterials 2016;83:156–68. 链接1

[61] Martínez Ávila H, Schwarz S, Rotter N, Gatenholm P. 3D bioprinting of human chondrocyte-laden nanocellulose hydrogels for patient-specific auricular cartilage regeneration. Bioprinting 2016;1–2:22–35. 链接1

[62] Christensen K, Xu C, Chai W, Zhang Z, Fu J, Huang Y. Freeform inkjet printing of cellular structures with bifurcations. Biotechnol Bioeng 2015;112 (5):1047–55. 链接1

[63] Bertassoni LE, Cecconi M, Manoharan V, Nikkhah M, Hjortnaes J, Cristino AL, et al. Hydrogel bioprinted microchannel networks for vascularization of tissue engineering constructs. Lab Chip 2014;14(13):2202–11. 链接1

[64] Malafaya PB, Reis RL. Bilayered chitosan-based scaffolds for osteochondral tissue engineering: influence of hydroxyapatite on in vitro cytotoxicity and dynamic bioactivity studies in a specific double-chamber bioreactor. Acta Biomater 2009;5(2):644–60. 链接1

[65] Ng WL, Yeong WY, Naing MW. Development of polyelectrolyte chitosangelatin hydrogels for skin bioprinting. Procedia CIRP 2016;49:105–12. 链接1

[66] Lee JS, Hong JM, Jung JW, Shim JH, Oh JH, Cho DW. 3D printing of composite tissue with complex shape applied to ear regeneration. Biofabrication 2014;6 (2):024103. 链接1

[67] Kolesky DB, Truby RL, Gladman AS, Busbee TA, Homan KA, Lewis JA. 3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs. Adv Mater 2014;26(19):3124–30. 链接1

[68] Hung BP, Naved BA, Nyberg EL, Dias M, Holmes CA, Elisseeff JH, et al. Threedimensional printing of bone extracellular matrix for craniofacial regeneration. ACS Biomater Sci Eng 2016;2(10):1806–16. 链接1

[69] Duan B. State-of-the-art review of 3D bioprinting for cardiovascular tissue engineering. Ann Biomed Eng 2017;45(1):195–209. 链接1

[70] Owens CM, Marga F, Forgacs G, Heesch CM. Biofabrication and testing of a fully cellular nerve graft. Biofabrication 2013;5(4):045007. 链接1

[71] Ouyang L, Highley CB, Rodell CB, Sun W, Burdick JA. 3D Printing of shearthinning hyaluronic acid hydrogels with secondary cross-linking. ACS Biomater Sci Eng 2016;2(10):1743–51. 链接1

[72] Narayanan LK, Huebner P, Fisher MB, Spang JT, Starly B, Shirwaiker RA. 3Dbioprinting of polylactic acid (PLA) nanofiber–alginate hydrogel bioink containing human adipose-derived stem cells. ACS Biomater Sci Eng 2016;2 (10):1732–42. 链接1

[73] Jungst T, Smolan W, Schacht K, Scheibel T, Groll J. Strategies and molecular design criteria for 3D printable hydrogels. Chem Rev 2016;116(3):1496–539. 链接1

[74] Faulkner-Jones A, Fyfe C, Cornelissen DJ, Gardner J, King J, Courtney A, et al. Bioprinting of human pluripotent stem cells and their directed differentiation into hepatocyte-like cells for the generation of mini-livers in 3D. Biofabrication 2015;7(4):044102. 链接1

[75] Ying G, Jiang N, Yu C, Zhang YS. Three-dimensional bioprinting of gelatin methacryloyl (GelMA). Bio-Des Manuf 2018;1(4):215–24. 链接1

[76] Gao G, Schilling AF, Hubbell K, Yonezawa T, Truong D, Hong Y, et al. Improved properties of bone and cartilage tissue from 3D inkjet-bioprinted human mesenchymal stem cells by simultaneous deposition and photocrosslinking in PEG-GelMA. Biotechnol Lett 2015;37(11):2349–55. 链接1

[77] Yin J, Yan M, Wang Y, Fu J, Suo H. 3D bioprinting of low-concentration cellladen gelatin methacrylate (GelMA) bioinks with a two-step cross-linking strategy. ACS Appl Mater Interfaces 2018;10(8):6849–57. 链接1

[78] Massa S, Sakr MA, Seo J, Bandaru P, Arneri A, Bersini S, et al. Bioprinted 3D vascularized tissue model for drug toxicity analysis. Biomicrofluidics 2017;11 (4):044109. 链接1

[79] Perniconi B, Costa A, Aulino P, Teodori L, Adamo S, Coletti D. The promyogenic environment provided by whole organ scale acellular scaffolds from skeletal muscle. Biomaterials 2011;32(31):7870–82. 链接1

[80] Pati F, Jang J, Ha DH, Won Kim S, Rhie JW, Shim JH, et al. Printing threedimensional tissue analogues with decellularized extracellular matrix bioink. Nat Commun 2014;5(1):3935. 链接1

[81] Gill EL, Li X, Birch MA, Huang YYS. Multi-length scale bioprinting towards simulating microenvironmental cues. Biodes Manuf 2018;1(2):77–88. 链接1

[82] Wang Z, Abdulla R, Parker B, Samanipour R, Ghosh S, Kim K. A simple and high-resolution stereolithography-based 3D bioprinting system using visible light crosslinkable bioinks. Biofabrication 2015;7(4):045009. 链接1

[83] Zhang YS, Arneri A, Bersini S, Shin SR, Zhu K, Goli-Malekabadi Z, et al. Bioprinting 3D microfibrous scaffolds for engineering endothelialized myocardium and heart-on-a-chip. Biomaterials 2016;110:45–59. 链接1

[84] Ahadian S, Khademhosseini A. A perspective on 3D bioprinting in tissue regeneration. Biodes Manuf 2018;1(3):157–60. 链接1

[85] Zhang Y. Post-3D printing modification for improved biomedical applications. Int J Bioprint 2017;3(2):93–9. 链接1

[86] Jakab K, Neagu A, Mironov V, Markwald RR, Forgacs G. Engineering biological structures of prescribed shape using self-assembling multicellular systems. Proc Natl Acad Sci USA 2004;101(9):2864–9. 链接1

[87] Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, et al. Embryonic stem cell lines derived from human blastocysts. Science 1998;282(5391):1145–7. 链接1

[88] Mehrban N, Teoh GZ, Birchall MA. 3D bioprinting for tissue engineering: stem cells in hydrogels. Int J Bioprint 2016;2. 链接1

[89] Tasoglu S, Demirci U. Bioprinting for stem cell research. Trends Biotechnol 2013;31(1):10–9. 链接1

[90] Ouyang L, Yao R, Mao S, Chen X, Na J, Sun W. Three-dimensional bioprinting of embryonic stem cells directs highly uniform embryoid body formation. Biofabrication 2015;7(4):044101. 链接1

[91] Knoepfler PS. Deconstructing stem cell tumorigenicity: a roadmap to safe regenerative medicine. Stem Cells 2009;27(5):1050–6. 链接1

[92] Körbling M, Estrov Z, Champlin R. Adult stem cells and tissue repair. Bone Marrow Transplant 2003;32(S1):S23–4. 链接1

[93] Du M, Chen B, Meng Q, Liu S, Zheng X, Zhang C, et al. 3D bioprinting of BMSCladen methacrylamide gelatin scaffolds with CBD-BMP2-collagen microfibers. Biofabrication 2015;7(4):044104. 链接1

[94] Ye K, Felimban R, Traianedes K, Moulton SE, Wallace GG, Chung J, et al. Chondrogenesis of infrapatellar fat pad derived adipose stem cells in 3D printed chitosan scaffold. PLoS One 2014;9(6):e99410. 链接1

[95] Richardson SM, Kalamegam G, Pushparaj PN, Matta C, Memic A, Khademhosseini A, et al. Mesenchymal stem cells in regenerative medicine: focus on articular cartilage and intervertebral disc regeneration. Methods 2016;99:69–80. 链接1

[96] Xu T, Binder KW, Albanna MZ, Dice D, Zhao W, Yoo JJ, et al. Hybrid printing of mechanically and biologically improved constructs for cartilage tissue engineering applications. Biofabrication 2013;5(1):015001. 链接1

[97] Müller M, Öztürk E, Arlov Ø, Gatenholm P, Zenobi-Wong M. Alginate sulfate– nanocellulose bioinks for cartilage bioprinting applications. Ann Biomed Eng 2017;45(1):210–23. 链接1

[98] Sawkins MJ, Mistry P, Brown BN, Shakesheff KM, Bonassar LJ, Yang J. Cell and protein compatible 3D bioprinting of mechanically strong constructs for bone repair. Biofabrication 2015;7(3):035004. 链接1

[99] Abaci HE, Guo Z, Coffman A, Gillette B, Lee WH, Sia SK, et al. Human skin constructs with spatially controlled vasculature using primary and iPSCderived endothelial cells. Adv Healthc Mater 2016;5(14):1800–7. 链接1

[100] O’Connell G, Garcia J, Amir J. 3D bioprinting: new directions in articular cartilage tissue engineering. ACS Biomater Sci Eng 2017;3(11):2657–68. 链接1

[101] Li X, Ding J, Wang J, Zhuang X, Chen X. Biomimetic biphasic scaffolds for osteochondral defect repair. Regen Biomater 2015;2(3):221–8. 链接1

[102] Atesok K, Doral MN, Karlsson J, Egol KA, Jazrawi LM, Coelho PG, et al. Multilayer scaffolds in orthopaedic tissue engineering. Knee Surg Sports Traumatol Arthrosc 2016;24(7):2365–73. 链接1

[103] Lopa S, Madry H. Bioinspired scaffolds for osteochondral regeneration. Tissue Eng Part A 2014;20(15–16):2052–76. 链接1

[104] Markstedt K, Mantas A, Tournier I, Martínez Ávila H, Hägg D, Gatenholm P. 3D bioprinting human chondrocytes with nanocellulose-alginate bioink for cartilage tissue engineering applications. Biomacromolecules 2015;16 (5):1489–96. 链接1

[105] Lv J, Xiu P, Tan J, Jia Z, Cai H, Liu Z. Enhanced angiogenesis and osteogenesis in critical bone defects by the controlled release of BMP-2 and VEGF: implantation of electron beam melting-fabricated porous Ti6Al4V scaffolds incorporating growth factor-doped fibrin glue. Biomed Mater 10 (3):035013. 链接1

[106] Monzón M, Liu C, Ajami S, Oliveira M, Donate R, Ribeiro V, et al. Functionally graded additive manufacturing to achieve functionality specifications of osteochondral scaffolds. Bio-Des Manuf 2018;1(1):69–75. 链接1

[107] Schon BS, Hooper GJ, Woodfield TBF. Modular tissue assembly strategies for biofabrication of engineered cartilage. Ann Biomed Eng 2017;45(1):100–14. 链接1

[108] Nukavarapu SP, Dorcemus DL. Osteochondral tissue engineering: current strategies and challenges. Biotechnol Adv 2013;31(5):706–21. 链接1

[109] Vijayavenkataraman S, Lu WF, Fuh JYH. 3D bioprinting of skin: a state-of-theart review on modelling, materials, and processes. Biofabrication 2016;8 (3):032001. 链接1

[110] Ng WL, Wang S, Yeong WY, Naing MW. Skin bioprinting: impending reality or fantasy? Trends Biotechnol 2016;34(9):689–99. 链接1

[111] Lee W, Debasitis JC, Lee VK, Lee JH, Fischer K, Edminster K, et al. Multi-layered culture of human skin fibroblasts and keratinocytes through threedimensional freeform fabrication. Biomaterials 2009;30(8):1587–95. 链接1

[112] Lee V, Singh G, Trasatti JP, Bjornsson C, Xu X, Tran TN, et al. Design and fabrication of human skin by three-dimensional bioprinting. Tissue Eng Part C Methods 2014;20(6):473–84. 链接1

[113] Kim G, Ahn S, Yoon H, Kim Y, Chun W. A cryogenic direct-plotting system for fabrication of 3D collagen scaffolds for tissue engineering. J Mater Chem 2009;19(46):8817–23. 链接1

[114] Kim G, Ahn S, Kim Y, Cho Y, Chun W. Coaxial structured collagen–alginate scaffolds: fabrication, physical properties, and biomedical application for skin tissue regeneration. J Mater Chem 2011;21(17):6165–72. 链接1

[115] Kim BS, Lee JS, Gao G, Cho DW. Direct 3D cell-printing of human skin with functional transwell system. Biofabrication 2017;9(2):025034. 链接1

[116] Kim BS, Kwon YW, Kong JS, Park GT, Gao G, Han W, et al. 3D cell printing of in vitro stabilized skin model and in vivo pre-vascularized skin patch using tissue-specific extracellular matrix bioink: a step towards advanced skin tissue engineering. Biomaterials 2018;168:38–53. 链接1

[117] Ng WL, Qi JTZ, Yeong WY, Naing MW. Proof-of-concept: 3D bioprinting of pigmented human skin constructs. Biofabrication 2018;10(2):025005. 链接1

[118] Min D, Lee W, Bae IH, Lee TR, Croce P, Yoo SS. Bioprinting of biomimetic skin containing melanocytes. Exp Dermatol 2018;27(5):453–9. 链接1

[119] Cvetkovic C, Raman R, Chan V, Williams BJ, Tolish M, Bajaj P, et al. Threedimensionally printed biological machines powered by skeletal muscle. Proc Natl Acad Sci USA 2014;111(28):10125–30. 链接1

[120] Jiang W, Ma L, Xu X. Recent progress on the design and fabrication of micromotors and their biomedical applications. Bio-Des Manuf 2018;1 (4):225–36. 链接1

[121] Zhang J, Zhu W, Radisic M, Vunjak-Novakovic G. Can we engineer a human cardiac patch for therapy? Circ Res 2018;123(2):244–65. 链接1

[122] Tijore A, Irvine SA, Sarig U, Mhaisalkar P, Baisane V, Venkatraman S. Contact guidance for cardiac tissue engineering using 3D bioprinted gelatin patterned hydrogel. Biofabrication 2018;10(2):025003. 链接1

[123] Wang Z, Lee SJ, Cheng HJ, Yoo JJ, Atala A. 3D bioprinted functional and contractile cardiac tissue constructs. Acta Biomater 2018;70:48–56. 链接1

[124] Kucukgul C, Ozler SB, Inci I, Karakas E, Irmak S, Gozuacik D, et al. 3D bioprinting of biomimetic aortic vascular constructs with self-supporting cells. Biotechnol Bioeng 2015;112(4):811–21. 链接1

[125] Miller JS, Stevens KR, Yang MT, Baker BM, Nguyen DHT, Cohen DM, et al. Rapid casting of patterned vascular networks for perfusable engineered three-dimensional tissues. Nat Mater 2012;11(9):768–74. 链接1

[126] Neiman JAS, Raman R, Chan V, Rhoads MG, Raredon MSB, Velazquez JJ, et al. Photopatterning of hydrogel scaffolds coupled to filter materials using stereolithography for perfused 3D culture of hepatocytes. Biotechnol Bioeng 2015;112(4):777–87. 链接1

[127] Nguyen DHT, Stapleton SC, Yang MT, Cha SS, Choi CK, Galie PA, et al. Biomimetic model to reconstitute angiogenic sprouting morphogenesis in vitro. Proc Natl Acad Sci USA 2013;110(17):6712–7. 链接1

[128] Bhattacharjee T, Zehnder SM, Rowe KG, Jain S, Nixon RM, Sawyer WG, et al. Writing in the granular gel medium. Sci Adv 2015;1(8):e1500655. 链接1

[129] Zhang Y, Yu Y, Akkouch A, Dababneh A, Dolati F, Ozbolat IT. In vitro study of directly bioprinted perfusable vasculature conduits. Biomater Sci 2015;3 (1):134–43. 链接1

[130] Mironov V, Visconti RP, Kasyanov V, Forgacs G, Drake CJ, Markwald RR. Organ printing: tissue spheroids as building blocks. Biomaterials 2009;30 (12):2164–74. 链接1

[131] Kucukgul C, Ozler B, Karakas HE, Gozuacik D, Koc B. 3D hybrid bioprinting of macrovascular structures. Procedia Eng 2013;59:183–92. 链接1

[132] Jain RK, Au P, Tam J, Duda DG, Fukumura D. Engineering vascularized tissue. Nat Biotechnol 2005;23(7):821–3. 链接1

[133] Suntornnond R, Tan EYS, An J, Chua CK. A highly printable and biocompatible hydrogel composite for direct printing of soft and perfusable vasculature-like structures. Sci Rep 2017;7(1):16902. 链接1

[134] Duan B, Hockaday LA, Kang KH, Butcher JT. 3D bioprinting of heterogeneous aortic valve conduits with alginate/gelatin hydrogels. J Biomed Mater Res A 2013;101A(5):1255–64. 链接1

[135] Duan B, Kapetanovic E, Hockaday LA, Butcher JT. Three-dimensional printed trileaflet valve conduits using biological hydrogels and human valve interstitial cells. Acta Biomater 2014;10(5):1836–46. 链接1

[136] Peng W, Datta P, Ayan B, Ozbolat V, Sosnoski D, Ozbolat IT. 3D bioprinting for drug discovery and development in pharmaceutics. Acta Biomater 2017;57:26–46. 链接1

[137] Skardal A, Shupe T, Atala A. Organoid-on-a-chip and body-on-a-chip systems for drug screening and disease modeling. Drug Discov Today 2016;21 (9):1399–411. 链接1

[138] Robbins JB, Gorgen V, Min P, Shepherd BR, Presnell SC. A novel in vitro threedimensional bioprinted liver tissue system for drug development. FASEB J 2013;27(872):12. 链接1

[139] Nguyen D, Robbins J, Crogan-Grundy C, Gorgen V, Bangalore P, Perusse D, et al. Functional characterization of three-dimensional (3D) human liver tissues generated by an automated bioprinting platform. FASEB J 2015;29: LB424. 链接1

[140] Nguyen DG, Funk J, Robbins JB, Crogan-Grundy C, Presnell SC, Singer T, et al. Bioprinted 3D primary liver tissues allow assessment of organ-level response to clinical drug induced toxicity in vitro. PLoS One 2016;11(7):e0158674. 链接1

[141] Lind JU, Yadid M, Perkins I, O’Connor BB, Eweje F, Chantre CO, et al. Cardiac microphysiological devices with flexible thin-film sensors for higherthroughput drug screening. Lab Chip 2017;17(21):3692–703. 链接1

[142] Lai BFL, Huyer LD, Lu RXZ, Drecun S, Radisic M, Zhang B. InVADE: integrated vasculature for assessing dynamic events. Adv Funct Mater 2017;27 (46):1703524. 链接1

[143] Musah S, Mammoto A, Ferrante TC, Jeanty SSF, Hirano-Kobayashi M, Mammoto T, et al. Mature induced-pluripotent-stem-cell-derived human podocytes reconstitute kidney glomerular-capillary-wall function on a chip. Nat Biomed Eng 2017;1:0069. 链接1

[144] Fleischer S, Shapira A, Feiner R, Dvir T. Modular assembly of thick multifunctional cardiac patches. Proc Natl Acad Sci USA 2017;114 (8):1898–903. 链接1

[145] Tumbleston JR, Shirvanyants D, Ermoshkin N, Janusziewicz R, Johnson AR, Kelly D, et al. Continuous liquid interface production of 3D objects. Science 2015;347(6228):1349–52. 链接1

[146] Hochleitner G, Fürsattel E, Giesa R, Groll J, Schmidt HW, Dalton PD. Melt electrowriting of thermoplastic elastomers. Macromol Rapid Commun 2018;39(10):e1800055. 链接1

[147] Hrynevich A, Elçi BS, Haigh JN, McMaster R, Youssef A, Blum C, et al. Dimension-based design of melt electrowritten scaffolds. Small 2018;14(22): e1800232. 链接1

[148] Shim JH, Lee JS, Kim JY, Cho DW. Bioprinting of a mechanically enhanced three-dimensional dual cell-laden construct for osteochondral tissue engineering using a multi-head tissue/organ building system. J Micromech Microeng 2012;22(8):085014. 链接1

[149] Ober TJ, Foresti D, Lewis JA. Active mixing of complex fluids at the microscale. Proc Natl Acad Sci USA 2015;112(40):12293–8. 链接1

[150] Liu W, Zhang YS, Heinrich MA, De Ferrari F, Jang HL, Bakht SM, et al. Rapid continuous multimaterial extrusion bioprinting. Adv Mater 2017;29 (3):1604630. 链接1

[151] Petta D, Armiento AR, Grijpma D, Alini M, Eglin D, D’Este M. 3D bioprinting of a hyaluronan bioink through enzymatic-and visible light-crosslinking. Biofabrication 2018;10(4):044104. 链接1

[152] Townsend JM, Beck EC, Gehrke SH, Berkland CJ, Detamore MS. Flow behavior prior to crosslinking: the need for precursor rheology for placement of hydrogels in medical applications and for 3D bioprinting. Prog Polym Sci 2019;91:126–40. 链接1

[153] Gao Q, Liu Z, Lin Z, Qiu J, Liu Y, Liu A, et al. 3D bioprinting of vessel-like structures with multilevel fluidic channels. ACS Biomater Sci Eng 2017;3(3):399–408. 链接1

[154] Wang R, Ozsvar J, Aghaei-Ghareh-Bolagh B, Hiob MA, Mithieux SM, Weiss AS. Freestanding hierarchical vascular structures engineered from ice. Biomaterials 2019;192:334–45. 链接1

[155] Yeo GC. A new vascular engineering strategy using 3D printed ice. Trends Biotechnol 2019;37(5):451–3. 链接1

[156] Ozbolat IT, Peng W, Ozbolat V. Application areas of 3D bioprinting. Drug Discov Today 2016;21(8):1257–71. 链接1

相关研究