期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2019年 第5卷 第3期 doi: 10.1016/j.eng.2019.04.010

燃油喷雾形态主动控制的可能性

Tokyo Denki University, Tokyo 120-8551, Japan

收稿日期: 2018-04-26 修回日期: 2019-02-01 录用日期: 2019-04-16 发布日期: 2019-06-14

下一篇 上一篇

摘要

内燃机(ICE)对于汽车是有吸引力的动力源,具有良好的可储存性、可运输性,同时需要供应高能量密度的液体燃料。具有高性能和低环境危害的紧凑型内燃机是内燃机发展趋势。未来必须把燃油喷雾智能主动控制的燃烧作为解决传统内燃机相关重大问题(如排放)的突破性技术。已发展出在喷雾期间形成预期的燃料喷射速率和喷射模式的技术,并且传统内燃机可以在一定程度上控制燃烧。但是在燃烧范围内,燃料在空间上的扩散并未取得预期进展。因此,对于燃烧的智能控制,新且有效的燃油喷雾主动控制技术是非常必要的。空化、闪蒸、喷雾- 喷雾相互作用、喷雾-壁面相互作用和空气流动是有可能实现燃油喷雾形态主动控制的基础。本文使用文献中的论据来讨论未来喷雾燃烧的智能紧凑内燃机中喷雾形态主动控制技术的可能性。

图片

图1

图2

图3

图4

图5

图6

图7

图8

图9

图10

图11

图12

图13

图14

图15

图16

图17

图18

图19

图20

图21

图22

图23

图24

图25

图26

图27

图28

图29

图30

图31

图32

图33

图34

图35

图36

图37

图38

参考文献

[ 1 ] Findings and recommendations. Summary of major findings [Internet]. Seattle: The Allen Institute for Artificial Intelligence; [cited 2019 Apr 25]. Available from: https://www.semanticscholar.org/paper/1.0-Findings-andRecommendations-11.1-Summary-of/6c1eb848e832847eff7de73a59e8568e 4d7f707e/figure/3.

[ 2 ] Arai M. Physics behind diesel spray and its combustion. Saarbrucken: Lambert Academic Publishing; 2016. p. 299–334. 链接1

[ 3 ] Arai M. Physics behind diesel sprays. In: Proceedings of the 12th International Conference on Liquid Atomization and Spray Systems; 2012 Sep 5; Heidelberg, Germany; 2012. p. 1–18. 链接1

[ 4 ] Noboru U. How far extreme-high pressure fuel injection have an effect on diesel combustion improvement? Mechan Engineer Cong 2014:W071003. Japanese. 链接1

[ 5 ] Agarwal AK, Singh AP, Maurya RK, Shukla PC, Dhar A, Srivastava DK. Combustion characteristics of a common rail direct injection engine using different fuel injection strategies. Int J Therm Sci 2018;134:475–84. 链接1

[ 6 ] Payri R, Salvador FJ, Martí-Aldaraví P, Vaquerizo D. ECN spray G external spray visualization and spray collapse description through penetration and morphology analysis. Appl Therm Eng 2017;112:304–16. 链接1

[ 7 ] SAE Standard: J2715_200703. Gasoline fuel injector spray measurement and characterization. Pittsburgh: SAE International; 2007. 链接1

[ 8 ] Singh AK, Lanjewar AM, Rehman A. Direct fuel injection system in gasoline engine—a review. Int J Innovat Technol Explor Engineer 2014;4(4): 21–8. 链接1

[ 9 ] Ebara T, Amagai K, Arai M. Image analysis of a diesel spray impinging on a wall. In: Proceedings of the 7th International Conference on Liquid Atomization and Spray systems; 1997 Aug 18–22; Seoul, Korea; 1997. p. 527–44. 链接1

[10] Leng X, Jin Y, He Z, Long W, Nishida K. Numerical study of the internal flow and initial mixing of diesel injector nozzles with V-type intersecting holes. Fuel 2017;197:31–41. 链接1

[11] Leng X, Jin Y, He Z, Wang Q, Li M, Long W. Effects of V-type intersecting hole on the internal and near field flow dynamics of pressure atomizer nozzles. Int J Therm Sci 2018;130:183–91. 链接1

[12] Yoshimura K, Hosaka T, Yasukawa Y, Ishii E, Ogura K. Effect of off-axis valve motion on spray shape of fuel injection. In: Proceedings of the 26th Symposium (ILASS-Japan) Atomization; 2017 Dec 19–20; Tokyo, Japan; 2017. 链接1

[13] Morgan TB, Bothell JK, Li D, Heindel TJ, Aliseda A, Machicoane N, et al. Feasibility of monochromatic X-ray imaging of the near-field region of an airblast atomizer. In: Proceedings of the 14th Triennial International Conference on Liquid Atomization and Spray Systems; 2018 Jul 22–26; Chicago, IL, USA; 2018. 链接1

[14] Matusik KE, Sforzo BA, Seong HJ, Duke DJ, Kastengren AL, Ilavsky J, et al. X-ray measurements of fuel spray specific surface area and sauter mean diameter or cavitating and non-cavitating diesel sprays. In: Proceedings of the 14th Triennial International Conference on Liquid Atomization and Spray Systems; 2018 Jul 22–26; Chicago, IL, USA; 2018. 链接1

[15] Torelli R, Sforzo BA, Matusik KE, Kastengren AL, Fezzaa K, Powell CP, et al. Investigation of shot-to-shot variability during short injections. In: Proceedings of the 14th Triennial International Conference on Liquid Atomization and Spray Systems; 2018 Jul 22–26; Chicago, IL, USA; 2018. 链接1

[16] Le D, Pietrzak BW, Shaver GM. Dynamic surface control of a piezoelectric fuel injector during rate shaping. Control Eng Pract 2014;30:12–26. 链接1

[17] Ferrari A, Novara C, Paolucci E, Vento O, Violante M, Zhang T. A new closedloop control of the injected mass for a full exploitation of digital and continuous injection-rate shaping. Energy Convers Manage 2018;177:629–39. 链接1

[18] Payri R, Bracho G, Gimeno J, Bautista A. Rate of injection modelling for gasoline direct injectors. Energy Convers Manage 2018;166:424–32. 链接1

[19] Arai M, Shimizu M, Gakumasawa H, Hiroyasu H. Attitude of high speed liquid jet controlled by internal cavitation in a nozzle. In: Proceedings of the 6th International Conference on Liquid Atomization and Spray Systems; 1994 Jul 18–22; Rouen, France; 1994. p. 286–93. 链接1

[20] Oda T, Ohnishi K, Gohda Y, Sumi T, Ohsawa K. Internal flow visualization a large-scaled VCO diesel nozzle with eccentric needle. In: Proceedings of the 12th Triennial International Conference on Liquid Atomization and Spray Systems; 2012 Sep 2–6; Heidelberg, Germany; 2012. 链接1

[21] He Z. Visual experiment of cavitating flow in a real-size diesel injector nozzle and les modeling of cloud cavitation shedding. In: Proceedings of the 6th Engine Researchers Forum; 2015 Jul 24–26; Shanghai; China; 2015. 链接1

[22] He Z, Guo G, Tao X, Zhong W, Leng X, Wang Q. Study of the effect of nozzle hole shape on internal flow and spray characteristics. Int Commun Heat Mass Transf 2016;71:1–8. 链接1

[23] Zhang X, He Z, Wang Q, Tao X, Zhou Z, Xia X, et al. Effect of fuel temperature on cavitation flow inside vertical multi-hole nozzles and spray characteristics with different nozzle geometries. Exp Therm Fluid Sci 2018;91:374–87. 链接1

[24] Nakase Y. Visualization technology of spray and combustion. In: Proceedings of the 25th Internal Combustion Engine Symposium; 2014 Nov 26–28; Tsukuba, Japan; 2014. 链接1

[25] Xu M. Development of advanced laser diagnostics to investigate the unique atomization and vaporization processes of flash boiling sprays. In: Proceedings of the Gordon Research Conference, Laser Diagnostics in Combustion; 2013 Aug 11–16; Waterville Valley, NH, USA; 2013. 链接1

[26] Zeng W, Xu M, Zhang G, Zhang Y, Cleary D. Atomization and vaporization for flash-boiling multi-hole sprays with alcohol fuels. Fuel 2012;95:287–97. 链接1

[27] Wang Z, Dai X, Liu F, Li Z, Wu H. Breakup of fuel sprays under cavitating and flash boiling conditions. Appl Therm Eng 2018;143:22–33. 链接1

[28] Li T, Dong X, Hung DLS, Li X, Xu M. Analysis of evaporation characteristics and heat transfer for flash-boiling sprays. Int J Heat Mass Transfer 2018;127:244–54. 链接1

[29] Chiba T, Saito M, Arai M. Behavior of diesel sprays in various ways of interspray impingement. In: Proceedings of the ILASS-Asia 2000; 2000 Dec 17–22; Tsukuba, Japan; 2000. 链接1

[30] Ko K, Huh J, Arai M. Diesel spray behavior and adhering fuel on a recessed wall. SAE Technical Paper 2003:2003–01–1834. 链接1

[31] Ko K, Arai M. Diesel spray impinging on a flat wall. Part I: characteristics of adhered fuel film in an impingement diesel spray. At Sprays 2002;12(5–6): 737–52. 链接1

[32] Shimo D. Research on improvement of diesel combustion by controlling distributions of mixture concentration/temperature and ignition-heat release rate [dissertation]. Hiroshima: Hiroshima University; 2013. Japanese. 链接1

[33] Arai M, Amagai K, Ebara T. Attitude control of a diesel spray under the Coanda effect. SAE Technical Paper 1994:941923. 链接1

相关研究