期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2019年 第5卷 第4期 doi: 10.1016/j.eng.2019.07.003

选区激光熔化纯钨——粉末粒径对激光吸收的影响和扫描轨迹形成机理研究

a College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China

b Jiangsu Provincial Engineering Laboratory for Laser Additive Manufacturing of High-Performance Metallic Components, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China

收稿日期: 2018-08-01 修回日期: 2018-10-08 录用日期: 2019-03-27 发布日期: 2019-07-03

下一篇 上一篇

摘要

本文建立了基于线迹追踪的三维激光吸收模型,用于描述选区激光熔化(SLM)成形纯钨粉末时激光束与粉末层的相互作用,研究了粉末粒径大小对粉末激光吸收率和吸收行为的影响。本文给出了激光吸收率、粉层吸收辐照度及其分布、激光扫描轨迹的表面形貌和几何特征(如接触角、宽度和高度,以及重熔深度)之间的内在关系。模拟结果表明,粉末层的吸收率大大超过单一的粉末颗粒或致密平板材料的吸收率。随着粉末粒径增加,粉末层吸收的激光能量减少。当粒径为5 μm时,纯钨粉末层的吸收率最大达到0.6030。激光辐照度在粉床颗粒表面的分布与粒径大小、方位角和粉末在基板上的位置有关。当粒径从5 μm增加到45 μm时,粉末层中的最大辐照度从1.117 × 10–3 W·μm–2降低到0.85 × 10–3 W·μm–2,并且位于中心辐照区域的辐照度分布轮廓逐渐收缩。对SLM纯钨扫描轨迹的表面形貌和横截面几何特征进行了研究,结果验证了模拟的粉末激光吸收行为。该工作对线迹追踪模型预测SLM扫描轨迹润湿性和铺展性的应用提供了科学依据,从而更好地获得优异的激光成形性能。

图片

图1

图2

图3

图4

图5

图6

图7

图8

图9

图10

参考文献

[ 1 ] Luo TG, Qu XH, Qin ML, Ouyang ML. Dimension precision of metal injection molded pure tungsten. Int J Refract Met Hard Mater 2009;27(3):615–20. 链接1

[ 2 ] Zhang GQ, Gu DD. Synthesis of nanocrystalline TiC reinforced W nanocomposites by high-energy mechanical alloying: microstructural evolution and its mechanism. Appl Surf Sci 2013;273:364–71. 链接1

[ 3 ] Qiao ZH, Wang HJ, Ma XF, Zhao W, Tang HG. Nanostructured bulk novel hard material with ‘‘rounded” grains obtained by nanocrystalline ‘‘rounded” (W0.5Al0.5)C powders. Mater Sci Eng A 2008;496(1–2):507–11. 链接1

[ 4 ] Smid I, Akiba M, Vieider G, Plöchl L. Development of tungsten armor and bonding to copper for plasma-interactive components. J Nucl Mater 1998;258– 263(Pt 1):160–72. 链接1

[ 5 ] Qiao ZH, Ma XF, Zhao W, Tang HG. Fabrication, thermal stability and mechanical properties of novel composite hardmetals obtained by solid-state reaction and hot-pressing sintering. Mater Chem Phys 2008;108(2–3):364–8. 链接1

[ 6 ] Attar H, Bonisch M, Calin M, Zhang LC, Scudino S, Eckert J. Selective laser melting of in situ titanium–titanium boride composites: processing, microstructure and mechanical properties. Acta Mater 2014;76(1):13–22. 链接1

[ 7 ] Gu DD, Dai DH, Chen WH, Chen H. Selective laser melting additive manufacturing of hard-to-process tungsten-based alloy parts with novel crystalline growth morphology and enhanced performance. J Manuf Sci Eng 2016;138(8):081003. 链接1

[ 8 ] Gu DD, Hagedorn YC, Meiners W, Meng GB, Batista RJS, Wissenbach K, et al. Densification behavior, microstructure evolution, and wear performance of selective laser melting processed commercially pure titanium. Acta Mater 2012;60(9):3849–60. 链接1

[ 9 ] Lu BH, Li DC, Tian XY. Development trends in additive manufacturing and 3D printing. Engineering 2015;1(1):85–9. 链接1

[10] Derby B. Additive manufacture of ceramics components by inkjet printing. Engineering 2015;1(1):113–23. 链接1

[11] Clausen A, Aage N, Sigmund O. Exploiting additive manufacturing infill in topology optimization for improved buckling load. Engineering 2016;2 (2):250–7. 链接1

[12] Zhang LC, Klemm D, Eckert J, Hao YL, Sercombe TB. Manufacture by selective laser melting and mechanical behavior of a biomedical Ti–24Nb–4Zr–8Sn alloy. Scr Mater 2011;65(1):21–4. 链接1

[13] Zhang L, Attar H. Selective laser melting of titanium alloys and titanium matrix composites for biomedical applications: a review. Adv Eng Mater 2016;18 (4):463–75. 链接1

[14] Song B, Wang ZW, Yan Q, Zhang YJ, Zhang JL, Cai C, et al. Integral method of preparation and fabrication of metal matrix composite: selective laser melting of in-situ nano/submicro-sized carbides reinforced iron matrix composites. Mater Sci Eng A 2017;707:478–87. 链接1

[15] Gu DD, Shen YF. Influence of Cu-liquid content on densification and microstructure of direct laser sintered submicron W-Cu/micron Cu powder mixture. Mater Sci Eng A 2008;489(1–2):169–77. 链接1

[16] Yadroitsev I, Gusarov A, Yadroitsava I, Smurov I. Single track formation in selective laser melting of metal powders. J Mater Process Technol 2010;210 (12):1624–31. 链接1

[17] Yadroitsev I, Krakhmalev P, Yadroitsava I, Johansson S, Smurov I. Energy input effect on morphology and microstructure of selective laser melting single track from metallic powder. J Mater Process Technol 2013;213(4):606–13. 链接1

[18] Aboulkhair NT, Maskery I, Tuck C, Ashcroft I, Everitt NM. On the formation of AlSi10Mg single tracks and layers in selective laser melting: microstructure and nano-mechanical properties. J Mater Process Technol 2016;230:88–98. 链接1

[19] Shi X, Ma S, Liu C, Wu Q. Parameter optimization for Ti–47Al–2Cr–2Nb in selective laser melting based on geometric characteristics of single scan tracks. Opt Laser Technol 2017;90:71–9. 链接1

[20] Tolochko NK, Khlopkov YV, Mozzharov SE, Ignatiev MB, Laoui T, Titov VI. Absorptance of powder materials suitable for laser sintering. Rapid Prototyping J 2000;6(3):155–61. 链接1

[21] McVey RW, Melnychuk RM, Todd JA, Martukanitz RP. Absorption of laser irradiation in a porous powder layer. J Laser Appl 2007;19(4):214–24. 链接1

[22] Rubenchik A, Wu S, Mitchell S, Golosker I, LeBlanc M, Peterson N. Direct measurements of temperature-dependent laser absorptivity of metal powders. Appl Opt 2015;54(24):7230–3. 链接1

[23] Boley CD, Khairallah SA, Rubenchik AM. Calculation of laser absorption by metal powders in additive manufacturing. Appl Opt 2015;54(9):2477–82. 链接1

[24] Gusarov AV, Yadroitsev I, Bertrand Ph, Smurov I. Heat transfer modelling and stability analysis of selective laser melting. Appl Surf Sci 2007;254 (4):975–9. 链接1

[25] Fischer P, Romano V, Weber HP, Karapatis NP, Boillat E, Glardon R. Sintering of commercially pure titanium powder with a Nd:YAG laser source. Acta Mater 2003;51(6):1651–62. 链接1

[26] Feeley T. LIA handbook of laser materials processing. Heidelberg: SpringerVerlag; 2001. 链接1

[27] Landau LD, Lifshitz EM, Sykes JB, Bell JS. Electrodynamics of continuous media. Phys Today 1961;14(10):48–50. 链接1

[28] Gusarov AV, Yadroitsev I, Bertrand P, Smurov I. Model of radiation and heat transfer in laser-powder interaction zone at selective laser melting. J Heat Transfer 2009;131(7):072101. 链接1

[29] Tsotridis G, Rother H, Hondros ED. Marangoni flow and the shapes of lasermelted pools. Naturwissenschaften 1989;76(5):216–8. 链接1

[30] Liu YJ, Liu Z, Jiang Y, Wang GW, Yang Y, Zhang LC. Gradient in microstructure and mechanical property of selective laser melted AlSi10Mg. J Alloys Compd 2018;735:1414–21. 链接1

[31] Dou L, Yuan ZF, Li JQ, Li J, Wang XQ. Surface tension of molten Al–Si alloy at temperatures ranging from 923 to 1123 K. Chin Sci Bull 2008;53 (17):2593–8. 链接1

[32] Iida T, Guthrie RIL. The physical properties of liquid metals. Oxford: Clarendon Press; 1993. 链接1

[33] Kruth JP, Levy G, Klocke F, Childs THC. Consolidation phenomena in laser and powder-bed based layered manufacturing. CIRP Ann 2007;56(2):730–59. 链接1

[34] Aboulkhair NT, Everitt NM, Ashcroft I, Tuck C. Reducing porosity in AlSi10Mg parts processed by selective laser melting. Addit Manuf 2014;1– 4:77–86. 链接1

[35] de Gennes PG. Wetting: statics and dynamics. Rev Mod Phys 1985;57 (3):827–63. 链接1

相关研究