期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2020年 第6卷 第12期 doi: 10.1016/j.eng.2019.08.020

Al-NaOH复合液态金属——一种具有热和气动特性且快速响应的水触发材料

a Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
b Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China

收稿日期: 2019-07-08 修回日期: 2019-08-15 录用日期: 2019-08-27 发布日期: 2020-07-30

下一篇 上一篇

摘要

水触发材料因其操作简单、驱动柔和、成本低廉、环境友好等诸多优点受到越来越多的关注。但是,大多数此类材料通常具有较长的反应时间,并且需要严格的保存条件,这限制了它们在实践中的适应性。本研究提出并证明了一种基于Al-NaOH复合共晶镓-铟(eGaIn)合金的新型水触发材料,该材料具有快速响应性和可变形性。一旦加入水,制成的材料将在短短几秒钟内随着气体的产生而升温40 ℃,这表明它具有用作热驱动器和气动驱动器的巨大潜力。此外,研究还测试了新材料的可重复使用性和降解能力。并据此设计了双层结构的智能绷带,其内部填充了Al-NaOH复合eGaIn,而BiInSn则作为外部支撑材料。实验显示,厚度为2 mm的片状结构经过冷却处理后能够支撑1.8 kg的重物,这比常用的玻璃纤维高分子绷带的承重能力要好得多。同时,研究还使用Al-NaOH复合eGaIn制作了水触发球形机器人的原型,该原型在特定的外部刺激下实现了滚动和弹跳行为。这些发现表明,当前材料在开发未来的可穿戴设备、软驱动器和软机器人方面具有潜在价值。

图片

图1

图2

图3

图4

图5

图6

图7

参考文献

[ 1 ] Huang Y, Cheng H, Shi G, Qu L. Highly efficient moisture-triggered nanogenerator based on graphene quantum dots. ACS Appl Mater Interfaces 2017;9(44):38170–5. 链接1

[ 2 ] Gao Y, Zhang Y, Wang X, Sim K, Liu J, Chen J, et al. Moisture-triggered physically transient electronics. Sci Adv 2017;3(9):e1701222. 链接1

[ 3 ] Cheng H, Liu J, Zhao Y, Hu C, Zhang Z, Chen N, et al. Graphene fibers with predetermined deformation as moisture-triggered actuators and robots. Angew Chem Int Ed Engl 2013;52(40):10482–6. 链接1

[ 4 ] Jiang ZC, Xiao YY, Kang Y, Li BJ, Zhang S. Semi-IPNs with moisture-triggered shape memory and self-healing properties. Macromol Rapid Commun 2017;38 (14):1700149. 链接1

[ 5 ] Wang W, Xiang C, Liu Q, Li M, Zhong W, Yan K, et al. Natural alginate fiberbased actuator driven by water or moisture for energy harvesting and smart controller applications. J Mater Chem A Mater Energy Sustain 2018;6 (45):22599–608. 链接1

[ 6 ] Cheng H, Hu Y, Zhao F, Dong Z, Wang Y, Chen N, et al. Moisture-activated torsional graphene-fiber motor. Adv Mater 2014;26(18):2909–13. 链接1

[ 7 ] Yang B, Huang WM, Li C, Lee CM, Li L. On the effects of moisture in a polyurethane shape memory polymer. Smart Mater Struct 2003;13(1): 191–5. 链接1

[ 8 ] Gu X, Mather PT. Water-triggered shape memory of multiblock thermoplastic polyurethanes (TPUs). RSC Adv 2013;3(36):15783–91. 链接1

[ 9 ] Fassler A, Majidi C. Liquid-phase metal inclusions for a conductive polymer composite. Adv Mater 2015;27(11):1928–32. 链接1

[10] Yu YZ, Lu JR, Liu J. 3D printing for functional electronics by injection and package of liquid metals into channels of mechanical structures. Mater Des 2017;122:80–9. 链接1

[11] Yang XH, Liu J. Liquid metal enabled combinatorial heat transfer science: toward unconventional extreme cooling. Front Energy 2018;12(2): 259–75. 链接1

[12] Chu K, Song BG, Yang HI, Kim DM, Lee CS, Park M, et al. Smart passivation materials with a liquid metal microcapsule as self-healing conductors for sustainable and flexible perovskite solar cells. Adv Funct Mater 2018;28 (22):1800110. 链接1

[13] Gao Y, Li H, Liu J. Direct writing of flexible electronics through room temperature liquid metal ink. PLoS ONE 2012;7(9):e45485. 链接1

[14] Zheng Y, He ZZ, Yang J, Liu J. Personal electronics printing via tapping mode composite liquid metal ink delivery and adhesion mechanism. Sci Rep 2014;4 (1):1–8. 链接1

[15] Nathan A, Ahnood A, Cole MT, Lee S, Suzuki Y, Hiralal P, et al. Flexible electronics: the next ubiquitous platform. Proc IEEE 2012;100(Special Centennial Issue):1486–517.

[16] Chang H, Guo R, Sun Z, Wang H, Hou Y, Wang Q, et al. Direct writing and repairable paper flexible electronics using nickel–liquid metal ink. Adv Mater Interfaces 2018;5(20):1800571. 链接1

[17] Tang J, Zhao X, Li J, Zhou Y, Liu J. Liquid metal phagocytosis: intermetallic wetting induced particle internalization. Adv Sci 2017;4(5): 1700024. 链接1

[18] Wang H, Yuan B, Liang S, Guo R, Rao W, Wang X, et al. PLUS-M: a porous liquid–metal enabled ubiquitous soft material. Mater Horiz 2018;5(2): 222–9. 链接1

[19] Zhang J, Yao Y, Sheng L, Liu J. Self-fueled biomimetic liquid metal mollusk. Adv Mater 2015;27(16):2648–55. 链接1

[20] Xu S, Zhao X, Liu J. Liquid metal activated aluminum–water reaction for direct hydrogen generation at room temperature. Renew Sustain Energy Rev 2018;92:17–37. 链接1

[21] Ghasemian M, Mayyas M, Idrus-Saidi S, Jamal MA, Yang J, Mofarah SS, et al. Self-limiting galvanic growth of MnO2 monolayers on a liquid metal—applied to photocatalysis. Adv Funct Mater 2019;29(36):1901649. 链接1

[22] Zavabeti A, Zhang B, De Castro I, Ou JZ, Carey BJ, Mohiuddin M, et al. Green synthesis of low-dimensional aluminum oxide hydroxide and oxide using liquid metal reaction media: ultrahigh flux membranes. Adv Funct Mater 2018;28(44):1804057. 链接1

[23] Wang X, Guo R, Liu J. Liquid metal based soft robotics: materials, designs, and applications. Adv Mater Technol 2019;4(2):1800549. 链接1

[24] Huang X, Gao T, Pan X, Wei D, Lv C, Qin L, et al. A review: feasibility of hydrogen generation from the reaction between aluminum and water for fuel cell applications. J Power Sources 2013;229:133–40. 链接1

相关研究