期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2020年 第6卷 第2期 doi: 10.1016/j.eng.2019.11.008

超轻折叠夹层圆柱壳的制备及力学性能测试

a State Key Laboratory for Disaster Prevention & Mitigation of Explosion & Impact, Army Engineering University of PLA, Nanjing 210007, China
b Research Center of Lightweight Structures and Intelligent Manufacturing, State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
c Aerospace System Engineering Shanghai, Shanghai 201108, China

收稿日期: 2019-01-19 修回日期: 2019-03-12 录用日期: 2019-04-09 发布日期: 2019-11-21

下一篇 上一篇

摘要

在本研究中,我们设计、制备和测试了两种新型折叠夹层圆柱壳。格栅夹芯具有周期性的“之”字形波纹,其脊线与谷线沿着轴向或环向延伸。通过自由振动和轴向压缩试验,我们研究了圆柱壳的固有频率、自由振动模态、承载能力和失效模式。通过减小局部蒙皮周期单元的尺寸,折叠格栅夹芯能有效地抑制折叠夹层圆柱壳的局部屈曲;通过提高夹层的剪切刚度,折叠格栅夹芯能有效地提高折叠夹层圆柱壳整体的抗屈曲性能。圆柱壳在材料失效模式下失效,其具有良好的承载能力。轴向折叠夹层圆柱壳具有更高的承载能力,而环向折叠夹层圆柱壳具有更高的固有频率。这两种折叠格栅内芯为工程师设计有强度或振动要求的夹层圆柱壳提供了一种选择。本研究也为大尺寸折叠结构的制作和工程应用提供了一种可行的方法。

图片

图1

图2

图3

图4

图5

图6

图7

图8

图9

图9

图10

图11

图12

图13

图14

参考文献

[ 1 ] Vasiliev VV, Barynin VA, Razin AF. Anisogrid composite lattice structures— development and aerospace applications. Compos Struct 2012;94(3):1117–27. 链接1

[ 2 ] Lovejoy AE, Schultz MR. Evaluation of analysis techniques for fluted-core sandwich cylinders. In: Proceedings of the 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference; 2012 Apr 23–26; Honolulu, HI, USA. Hampton: NASA Langley Research Center; 2012. 链接1

[ 3 ] Fan H, Fang D, Chen L, Dai Z, Yang W. Manufacturing and testing of a CFRC sandwich cylinder with Kagome cores. Compos Sci Technol 2009;69(15– 16):2695–700. 链接1

[ 4 ] Sun F, Fan H, Zhou C, Fang D. Equivalent analysis and failure prediction of quasi-isotropic composite sandwich cylinder with lattice core under uniaxial compression. Compos Struct 2013;101:180–90. 链接1

[ 5 ] Chen L, Fan H, Sun F, Zhao L, Fang D. Improved manufacturing method and mechanical performances of carbon fiber reinforced lattice-core sandwich cylinder. Thin-Walled Struct 2013;68:75–84. 链接1

[ 6 ] Zhang H, Sun F, Fan H, Chen H, Chen L, Fang D. Free vibration behaviors of carbon fiber reinforced lattice-core sandwich cylinder. Compos Sci Technol 2014;100:26–33. 链接1

[ 7 ] Han Y, Wang P, Fan H, Sun F, Chen L, Fang D. Free vibration of CFRC lattice-core sandwich cylinder with attached mass. Compos Sci Technol 2015;118:226–35. 链接1

[ 8 ] Sun F, Wang P, Li W, Fan H, Fang D. Effects of circular cutouts on mechanical behaviors of carbon fiber reinforced lattice-core sandwich cylinder. Compos Part A 2017;100:313–23. 链接1

[ 9 ] Jiang S, Sun F, Fan H, Fang D. Fabrication and testing of composite orthogrid sandwich cylinder. Compos Sci Technol 2017;142:171–9. 链接1

[10] Jiang S, Sun F, Zhang X, Fan H. Interlocking orthogrid: an efficient way to construct lightweight lattice-core sandwich composite structure. Compos Struct 2017;176:55–71. 链接1

[11] Yin S, Chen H, Wu Y, Li Y, Xu J. Introducing composite lattice core sandwich structure as an alternative proposal for engine hood. Compos Struct 2018;201:131–40. 链接1

[12] Li W, Sun F, Wang P, Fan H, Fang D. A novel carbon fiber reinforced lattice truss sandwich cylinder: fabrication and experiments. Compos Part A 2016;81:313–22. 链接1

[13] Hu Y, Li W, An X, Fan H. Fabrication and mechanical behaviors of corrugated lattice truss composite sandwich panels. Compos Sci Technol 2016;125:114–22. 链接1

[14] Sun F, Lai CL, Fan H. Failure mode maps for composite anisogrid lattice sandwich cylinders under fundamental loads. Compos Sci Technol 2017;152:149–58. 链接1

[15] Li M, Fan H. Multi-failure analysis of composite Isogrid stiffened cylinders. Compos Part A 2018;107:248–59. 链接1

[16] Li M, Sun F, Lai C, Fan H, Ji B, Zhang X, et al. Fabrication and testing of composite hierarchical Isogrid stiffened cylinder. Compos Sci Technol 2018;157:152–9. 链接1

[17] Wu H, Lai C, Sun F, Li M, Ji B, Wei W, et al. Carbon fiber reinforced hierarchical orthogrid stiffened cylinder: fabrication and testing. Acta Astronaut 2018;145:268–74. 链接1

[18] Cai J, Zhang Y, Xu Y, Zhou Y, Feng J. The foldability of cylindrical foldable structures based on rigid Origami. J Mech Des 2016;138(3):031401. 链接1

[19] Zhou X, Zang S, Wang H, You Z. Geometric design and mechanical properties of cylindrical fold-core sandwich structures. Thin Wall Struct 2015;89:116–30. 链接1

[20] Xiong J, Feng L, Ghosh R, Wu H, Wu L, Ma L, et al. Fabrication and mechanical behavior of carbon fiber composite sandwich cylindrical shells with corrugated cores. Compos Struct 2016;156:307–19. 链接1

[21] Yang J, Xiong J, Ma L, Feng L, Wang S, Wu L. Modal response of all-composite corrugated sandwich cylindrical shells. Compos Sci Technol 2015;115:9–20. 链接1

[22] Liu B, Sun Y, Sun Y, Zhu Y. Fabrication and compressive behavior of carbon- fiber-reinforced cylindrical fold-core sandwich structure. Compos Part A 2019;118:9–19. 链接1

[23] Gattas JM, Wu W, You Z. Miura-base rigid origami: parameterizations of firstlevel derivative and piecewise geometries. J Mech Des 2013;135(11):111011. 链接1

[24] Kim TD. Fabrication and testing of composite Isogrid stiffened cylinder. Compos Struct 1999;45(1):1–6. 链接1

[25] Li W, Sun F, Wei W, Liu D, Zhang X, Li M, et al. Fabrication and testing of composite corrugated-core sandwich cylinder. Compos Sci Technol 2018;156:127–35. 链接1

相关研究