期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2020年 第6卷 第6期 doi: 10.1016/j.eng.2020.05.003

Ni-Ti-Cu-V四元薄膜库中微观结构和相变的组合合成和高通量表征

a Department of Materials Science and Engineering, University of Maryland, College Park, MD 20742, USA
b Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
c Werkstoffe der Mikrotechnik, Ruhr-Universität Bochum, Bochum 44801, Germany

收稿日期: 2019-06-03 修回日期: 2019-10-10 录用日期: 2019-12-24 发布日期: 2020-05-16

下一篇 上一篇

摘要

过去70年来,基于Ni-Ti的形状记忆合金(shape memory alloy, SMA)已得到广泛使用,但是提高 其功能稳定性仍然是实现更稳健和更高级应用的关键。SMA因其能够通过可逆的马氏体转变来保 持加工后的形状而得名,它对成分的变化非常敏感。因此,用三元和四元元素合金化来微调SMA 的晶格参数和热滞,成为材料研究中的一个难题。组合材料科学允许从多种表征技术中简化合成 过程和数据管理。本研究采用磁控溅射的方法,在热氧化的硅晶片上制备了具有成分分布的Ni-TiCu-V薄膜库。使用高通量波长色散光谱、同步加速器X射线衍射和温度相关的电阻,测量研究并 确定了成分相关的相变温度和微观结构。在材料库的177种成分中,有32种成分具有形状记忆效应, 其中5种成分具有零或接近零的热滞效应。应用中,这些合金成分在给定工作温度范围内提供了选 择的灵活性。结合薄膜库的局部微观结构和组成,讨论了四元体系的相图和功能特性的相关性。 

图片

图1

图2

图3

图4

图5

图6

参考文献

[ 1 ] Otsuka K, Wayman CM, editors. Shape memory materials. Cambridge: Cambridge University Press; 1998. 链接1

[ 2 ] Buehler WJ, Wang FE. A summary of recent research on the nitinol alloys and their potential application in ocean engineering. Ocean Eng 1968;1(1):105–20. 链接1

[ 3 ] Stöckel D. The shape memory effect: phenomenon, alloys, applications. In: Proceedings of the 1995 Shape Memory Alloys for Power Systems EPRI; 1995; Fremont, CA, USA; 1995. p. 1–13.

[ 4 ] Otsuka K, Ren X. Physical metallurgy of Ti–Ni-based shape memory alloys. Prog Mater Sci 2005;50(5):511–678. 链接1

[ 5 ] Lagoudas DC, editor. Shape memory alloys: modeling and engineering applications. Boston: Springer; 2008. 链接1

[ 6 ] Lobo PS, Almeida J, Guerreiro L. Shape memory alloys behaviour: a review. Procedia Eng 2015;114:776–83. 链接1

[ 7 ] Mohd Jani J, Leary M, Subic A, Gibson MA. A review of shape memory alloy research, applications and opportunities. Mater Des 2014;56:1078–113. 链接1

[ 8 ] Zarinejad M, Liu Y. Dependence of transformation temperatures of NiTi-based shape-memory alloys on the number and concentration of valence electrons. Adv Funct Mater 2008;18(18):2789–94. 链接1

[ 9 ] Frenzel J, Wieczorek A, Opahle I, Maaß B, Drautz R, Eggeler G. On the effect of alloy composition on martensite start temperatures and latent heats in Ni–Ti– based shape memory alloys. Acta Mater 2015;90:213–31. 链接1

[10] Otsuka K, Ren XB. Factors affecting the ms temperature and its control in shape-memory alloys. Mater Sci Forum 2002;394–395:177–84. 链接1

[11] Morgan N. Medical shape memory alloy applications—the market and its products. Mater Sci Eng A 2004;378(1–2):16–23. 链接1

[12] Petrini L, Migliavacca F. Biomedical applications of shape memory alloys. J Metall 2011;2011:1–15. 链接1

[13] Otsuka K, Kakeshita T. Science and technology of shape-memory alloys: new developments. MRS Bull 2002;27(2):91–100. 链接1

[14] Qian S. Development of thermoelastic cooling systems [dissertation]. Maryland: University of Maryland, College Park; 2015. 链接1

[15] Qian S, Geng Y, Wang Y, Pillsbury TE, Hada Y, Yamaguchi Y, et al. Elastocaloric effect in CuAlZn and CuAlMn shape memory alloys under compression. Philos Trans R Soc A Math Phys Eng Sci 2016;374(2074):20150309. 链接1

[16] Chluba C, Ge W, Lima de Miranda R, Strobel J, Kienle L, Quandt E, et al. Ultralow-fatigue shape memory alloy films. Science 2015;348(6238):1004–7. 链接1

[17] Vasile SI, Grabowska KE, Ciesielska-Wrobel I, Ghitaiga J. Analysis of hybrid woven fabrics with shape memory alloys wires embedded. Fibres Text East Eur 2010;18(1):64–9. 链接1

[18] Xue D, Xue D, Yuan R, Zhou Y, Balachandran PV, Ding X, et al. An informatics approach to transformation temperatures of NiTi-based shape memory alloys. Acta Mater 2017;125:532–41. 链接1

[19] Xue D, Balachandran PV, Hogden J, Theiler J, Xue D, Lookman T. Accelerated search for materials with targeted properties by adaptive design. Nat Commun 2016;7(1):1–9. 链接1

[20] Cui J, Chu YS, Famodu OO, Furuya Y, Hattrick-Simpers J, James RD, et al. Combinatorial search of thermoelastic shape-memory alloys with extremely small hysteresis width. Nat Mater 2006;5(4):286–90. 链接1

[21] Zarnetta R, Takahashi R, Young ML, Savan A, Furuya Y, Thienhaus S, et al. Identification of quaternary shape memory alloys with near-zero thermal hysteresis and unprecedented functional stability. Adv Funct Mater 2010;20 (12):1917–23. 链接1

[22] Van der Pauw LJ. A method of measuring specific resistivity and Hall effect of discs of arbitrary shape. Philips Res Rep 1958;13(1):1–9. 链接1

[23] Thienhaus S, Zamponi C, Rumpf H, Hattrick-Simpers J, Takeuchi I, Ludwig A. High-throughput characterization of shape memory thin films using automated temperature-dependent resistance measurements. MRS Proc 2006;894:197. 链接1

[24] Mueller T, Kusne A, Ramprasad R. Machine learning in materials science: recent progress and emerging applications. Rev Comput Chem 2016;29:186–273. 链接1

[25] Long CJ, Hattrick-Simpers J, Murakami M, Srivastava RC, Takeuchi I, Karen VL, et al. Rapid structural mapping of ternary metallic alloy systems using the combinatorial approach and cluster analysis. Rev Sci Instrum 2007;78 (7):072217. 链接1

[26] Schmidt M, Ullrich J, Wieczorek A, Frenzel J, Schütze A, Eggeler G, et al. Thermal stabilization of NiTiCuV shape memory alloys: observations during elastocaloric training. Shape Mem Superelasticity 2015;1(2):132–41. 链接1

[27] Kim Y, Jo MG, Park JW, Park HK, Han HN. Elastocaloric effect in polycrystalline Ni50Ti45.3V4.7 shape memory alloy. Scr Mater 2018;144:48–51. 链接1

[28] Bechtold C, Chluba C, Lima de Miranda R, Quandt E. High cyclic stability of the elastocaloric effect in sputtered TiNiCu shape memory films. Appl Phys Lett 2012;101(9):091903. 链接1

相关研究