期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2022年 第17卷 第10期 doi: 10.1016/j.eng.2020.08.025

纳米工程混凝土界面过渡区的纳米力学特征

a School of Civil Engineering, Dalian University of Technology, Dalian 116024, China
b School of Material Science and Engineering, Dalian University of Technology, Dalian 116024, China
c Department of Materials and Environment (Microlab), Faculty of Civil Engineering and Geoscience, Delft University of Technology, Delft 2628 CN, Netherlands

收稿日期: 2020-04-28 修回日期: 2020-07-19 录用日期: 2020-08-23 发布日期: 2021-04-16

下一篇 上一篇

摘要

本研究利用纳米压痕试验和统计学方法研究了纳米填料对水泥石与骨料间界面过渡区(interfacial transition zone, ITZ)的影响,并通过微观力学分析揭示了影响机制。纳米压痕试验结果表明,水泥石复合纳米填料可提高水泥石-骨料ITZ 内部水化程度,减少微孔隙和低密度水化硅酸钙(low-density calcium silicate hydrate, LD C-S-H)的含量,增加高密度水化硅酸钙(high-density calcium silicate hydrate, HD C-SH)和超高密度水化硅酸钙(ultra-high-density calcium silicate hydrate, UHD C-S-H)的含量。此外,本研究表征了一种新的由于纳米中心效应诱导产生的低密度水化硅酸钙(nano-core induced low-density calcium silicate hydrate, NCILD C-S-H),其压痕模量与HD C-S-H 和UHD C-S-H 相似,但硬度高达2.50 GPa。微观力学分析结果表明,ITZ水泥石复合纳米填料后产生的纳米中心-壳单元会增加LD C-S-H的堆积密度,并显著增强水化硅酸钙(calcium silicate hydrate, C-S-H)基本粒子之间的相互作用(包括黏聚力和摩擦力),从而诱导产生NCILD C-S-H,进而改善ITZ。本研究为在纳米尺度上理解纳米填料对混凝土ITZ 的影响提供了理论基础。

图片

图1

图2

图3

图4

图5

图6

图7

图8

图9

图10

图11

图12

图13

参考文献

[ 1 ] Scrivener KL, Crumbie AK, Laugesen P. The interfacial transition zone (ITZ) between cement paste and aggregate in concrete. Interface Sci 2004;‍12(4):411‒21. 链接1

[ 2 ] Hu J, Stroeven P. Properties of the interfacial transition zone in model concrete. Interface Sci 2004;12(4):389‒97. 链接1

[ 3 ] Maso JC, editor. Interfacial transition zone in concrete. London: CRC Press; 2014.

[ 4 ] Chen H, Sun W, Stroeven P. Interfacial transition zone between aggregate and paste in cementitious composites (II): mechanism of formation and degradation of interfacial transition zone microstructure and its influence factors. J Chin Ceram Soc 2004;32(1):70‒9.

[ 5 ] Xiao J, Li W, Corr DJ, Shah SP. Effects of interfacial transition zones on the stress‒strain behavior of modeled recycled aggregate concrete. Cem Concr Res 2013;52:82‒99. 链接1

[ 6 ] Setiawan Y, Gan BS, Han AL. Modeling of the ITZ zone in concrete: experiment and numerical simulation. Comput Concr 2017;19(6):641‒9.

[ 7 ] Hong L, Gu XL, Lin F. Influence of aggregate surface roughness on mechanical properties of interface and concrete. Constr Build Mater 2014;65:338‒49. 链接1

[ 8 ] Zhang L, Zhang Y, Liu C, Liu L, Tang K. Study on microstructure and bond strength of interfacial transition zone between cement paste and high-performance lightweight aggregates prepared from ferrochromium slag. Constr Build Mater 2017;142:31‒41. 链接1

[ 9 ] Hussin A, Poole C. Petrography evidence of the interfacial transition zone (ITZ) in the normal strength concrete containing granitic and limestone aggregates. Constr Build Mater 2011;25(5):2298‒303. 链接1

[10] Gao Y, Hu C, Zhang Y, Li Z, Pan J. Investigation on microstructure and microstructural elastic properties of mortar incorporating fly ash. Cem Concr Compos 2018;86:315‒21. 链接1

[11] Wu K, Shi HS, Xu LL. Effect of mineral admixture on mechanical properties of concrete by adjusting interfacial transition zone microstructure. J Chin Ceram Soc 2017;5:623‒30.

[12] Rossignolo JA, Rodrigues MS, Frias M, Santos SF, Junior HS. Improved interfacial transition zone between aggregate-cementitious matrix by addition sugarcane industrial ash. Cem Concr Compos 2017;80:157‒67. 链接1

[13] Zhang M, Islam J, Peethamparan S. Use of nano-silica to increase early strength and reduce setting time of concretes with high volumes of slag. Cem Concr Compos 2012;34(5):650‒62. 链接1

[14] Zhang M, Islam J. Use of nano-silica to reduce setting time and increase early strength of concretes with high volumes of fly ash or slag. Constr Build Mater 2012;29:573‒80. 链接1

[15] Wang X, Zheng Q, Dong S, Ashour A, Han B. Interfacial characteristics of nano-engineered concrete composites. Constr Build Mater 2020;259:119803. 链接1

[16] Khaloo A, Mobini MH, Hosseini P. Influence of different types of nano-SiO2 particles on properties of high-performance concrete. Constr Build Mater 2016;113:188‒201. 链接1

[17] Noorvand H, Ali AAA, Demirboga R, Farzadnia N, Noorvand H. Incorporation of nano TiO2 in black rice husk ash mortars. Constr Build Mater 2013;‍47:1350‒61. 链接1

[18] Wang X, Dong S, Ashour A, Zhang W, Han B. Effect and mechanisms of nanomaterials on interface between aggregates and cement mortars. Constr Build Mater 2020;240:117942. 链接1

[19] Du H, Pang S. Enhancement of barrier properties of cement mortar with graphene nanoplatelet. Cem Concr Res 2015;76:10‒9. 链接1

[20] Gupta S, Gonzalez JG, Loh KJ. Self-sensing concrete enabled by nano-engineered cement-aggregate interfaces. Struct Health Monit 2017;‍16(3):309‒23. 链接1

[21] García-Macías E, D’‍Alessandro A, Castro-Triguero R, Pérez-Mira D, Ubertini F. Micromechanics modeling of the uniaxial strain-sensing property of carbon nanotube cement-matrix composites for SHM applications. Compos Struct 2017;163:195‒215. 链接1

[22] Ubertini F, Laflamme S, Ceylan H, Materazzi AL, Cerni G, Saleem H, et al. Novel nanocomposite technologies for dynamic monitoring of structures: a comparison between cement-based embeddable and soft elastomeric surface sensors. Smart Mater Struct 2014;23(4):984‒6. 链接1

[23] Han B, Zhang L, Zeng S, Dong S, Yu X, Yang R, et al. Nano-core effect in nano-engineered cementitious composites. Composites Pt A 2017;95:100‒9. 链接1

[24] Han B, Ding S, Wang J, Ou J. Nano-engineered cementitious composites: principles and practices. Berlin: Springer; 2018. 链接1

[25] Wang X, Jacobsen S, He J, Zhang Z, Lee SF, Lein HL. Application of nanoindentation testing to study of the interfacial transition zone in steel fiber reinforced mortar. Cem Concr Res 2009;39(8):701‒15. 链接1

[26] Sorelli L, Constantinides G, Ulm FJ, Toutlemonde F. The nano-mechanical signature of ultra high performance concrete by statistical nanoindentation techniques. Cem Concr Res 2008;38(12):1447‒56. 链接1

[27] Lee H, Vimonsatit V, Chindaprasirt P. Mechanical and micromechanical properties of alkali activated fly-ash cement based on nano-indentation. Constr Build Mater 2016;107:95‒102. 链接1

[28] Xu J, Corr DJ, Shah SP. Nanomechanical investigation of the effects of nanoSiO2 on C-S-H gel/cement grain interfaces. Cem Concr Compos 2015;61:7‒17. 链接1

[29] Luo Z, Li W, Gan Y, Mendu K, Shah SP. Maximum likelihood estimation for nanoindentation on sodium aluminosilicate hydrate gel of geopolymer under different silica modulus and curing conditions. Composites Pt B 2020;‍198:108185. 链接1

[30] Luo Z, Li W, Gan Y, Mendu K, Shah SP. Applying grid nanoindentation and maximum likelihood estimation for N-A-S-H gel in geopolymer paste: investigation and discussion. Cem Concr Res 2020;135:106112. 链接1

[31] Konsta-Gdoutos MS, Metaxa ZS, Shah SP. Multi-scale mechanical and fracture characteristics and early-age strain capacity of high performance carbon nanotube/cement nanocomposites. Cem Concr Compos 2010;32(2):110‒5. 链接1

[32] Long W, Xiao B, Gu Y, Xing F. Micro-and macro-scale characterization of nano-SiO2 reinforced alkali activated slag composites. Mater Charact 2018;136:111‒21. 链接1

[33] Muthu M, Santhanam M. Effect of reduced graphene oxide, alumina and silica nanoparticles on the deterioration characteristics of Portland cement paste exposed to acidic environment. Cem Concr Compos 2018;91:118‒37. 链接1

[34] Sáez de Ibarra Y, Gaitero JJ, Erkizia E, Campillo I. Atomic force microscopy and nanoindentation of cement pastes with nanotube dispersions. Phys Status Solidi A 2006;203(6):1076‒81. 链接1

[35] Long W, Gu Y, Xiao B, Zhang Q, Xing F. Micro-mechanical properties and multi-scaled pore structure of graphene oxide cement paste: synergistic application of nanoindentation, X-ray computed tomography, and SEM-EDS analysis. Constr Build Mater 2018;179:661‒74. 链接1

[36] Arun S, Rama Sreekanth PS, Kanagaraj S. Mechanical characterisation of PMMA/SWNTs bone cement using nanoindenter. Mater Technol 2014;‍ 29(Suppl 1):B4‒9. 链接1

[37] Zhao SJ, Sun W. Nano-mechanical behavior of a green ultra-high performance concrete. Constr Build Mater 2014;63:150‒60. 链接1

[38] Xu J, Wang B, Zuo J. Modification effects of nanosilica on the interfacial transition zone in concrete: a multiscale approach. Cem Concr Compos 2017;81:1‒10. 链接1

[39] Constantinides G, Ulm FJ. The nanogranular nature of C-S-H. J Mech Phys Solids 2007;55(1):64‒90. 链接1

[40] Xu L, Deng F, Chi Y. Nano-mechanical behavior of the interfacial transition zone between steel-polypropylene fiber and cement paste. Constr Build Mater 2017;145:619‒38. 链接1

[41] Oliver WC, Pharr GM. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res 1992;7(6):1564‒83. 链接1

[42] Ulm FJ, Vandamme M, Jennings HM, Vanzo J, Bentivegna M, Krakowiak KJ, et al. Does microstructure matter for statistical nanoindentation techniques? Cem Concr Compos 2010;32(1):92‒9. 链接1

[43] DeJong MJ, Ulm FJ. The nanogranular behavior of C-S-H at elevated temperatures (up to 700 °C). Cem Concr Res 2007;37(1):1‒12. 链接1

[44] Vandamme M, Ulm FJ, Fonollosa P. Nanogranular packing of C-S-H at substochiometric conditions. Cem Concr Res 2010;40(1):14‒26. 链接1

[45] Bentz DP, Stutzman PE. Evolution of porosity and calcium hydroxide in laboratory concretes containing silica fume. Cem Concr Res 1994;‍24(6):1044‒50. 链接1

[46] Jennings HM. A model for the microstructure of calcium silicate hydrate in cement paste. Cem Concr Res 2000;30(1):101‒16. 链接1

[47] Jennings HM, Thomas JJ, Gevrenov JS, Constantinides G, Ulm FJ. A multi-technique investigation of the nanoporosity of cement paste. Cem Concr Res 2007;37(3):329‒36. 链接1

[48] Jennings HM. Refinements to colloid model of C-S-H in cement: CM-II. Cem Concr Res 2008;38(3):275‒89. 链接1

[49] Sanahuja J, Dormieux L, Chanvillard G. Modelling elasticity of a hydrating cement paste. Cem Concr Res 2007;37(10):1427‒39. 链接1

[50] Cariou S, Ulm FJ, Dormieux L. Hardness-packing density scaling relations for cohesive-frictional porous materials. J Mech Phys Solids 2008;56(3):924‒52. 链接1

[51] Chen JJ, Sorelli L, Vandamme M, Ulm FJ, Chanvillard GC. A coupled nanoindentation/SEM-EDS study on low water/cement ratio Portland cement paste: evidence for C-S-H/Ca(OH)2 nanocomposites. J Am Ceram Soc 2010;93(5):1484‒93.

相关研究