期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2022年 第15卷 第8期 doi: 10.1016/j.eng.2020.12.017

利用水碳耦合管理实现黄土高原植被恢复的可持续发展

a Department of Earth and Environmental Science, School of Human Settlements and Civil Engineering, Xi’an Jiaotong University, Xi’an 710049, China
b A.M. Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences, Moscow 119017, Russia

收稿日期: 2020-08-04 修回日期: 2020-11-15 录用日期: 2020-12-15 发布日期: 2021-03-04

下一篇 上一篇

摘要

黄土高原“退耕还林(草)”(Grain-for-Green)是世界上规模最大的植被恢复工程。植被恢复引起的土地利用变化(land use change)会改变区域的水碳循环过程,从而影响生态环境稳定和可持续发展。明确植被恢复的水碳效应是当前黄土高原生态水文研究的一个重要科学问题。本研究以黄土高原泾河流域为例,量化了植被恢复引起的水碳效应,并以“减沙、保水、固碳”为原则确定了流域尺度上退耕还林(草)的适宜区域。为此,本研究利用水文-生物地球化学循环耦合模型(SWAT-DayCent),通过设计多种基于植被恢复政策的土地利用转换情景,模拟了水碳循环关键要素的变化。结果表明,与基准情景(2000 年土地利用)相比,当以森林或草地代替坡耕地时,产沙量和产水量都大幅下降。当用森林植被替代坡耕地(坡度大于25°、15°和6°)(CTF)时,会增加土壤的固碳量且对土壤水分产生轻微影响(<1.0%);而当用草地替换坡耕地(CTG)时,会导致净初级生产力的下降和土壤含水量大幅增加(3.8%⁓14.9%)。与基准情景相比,土壤有机碳(SOC)在CTF情景下增加0.9%⁓3.2%,而在CTG情景下保持相对稳定。通过分析土地利用变化与水碳效应的关系,进一步确定了实施CTF和CTG的适宜区域,并能实现“减沙、保水、固碳”的效益最大化。本研究基于水碳耦合模拟提供了一个植被恢复工程实施的新视角,即在恰当区域进行退耕还林(草)可实现水碳耦合效益最大化,这可为区域未来生态恢复工程的优化提供科学支撑。

补充材料

图片

图1

图2

图3

图4

图5

图6

图7

图8

参考文献

[ 1 ] Guerry AD, Polasky S, Lubchenco J, Chaplin-Kramer R, Daily GC, Griffin R, et al. Natural capital and ecosystem services informing decisions: from promise to practice. Proc Natl Acad Sci USA 2015;112(24):7348‒55. 链接1

[ 2 ] Wu Y, Liu S, Sohl TL, Young CJ. Projecting the land cover change and its environmental impacts in the Cedar River Basin in the Midwestern United States. Environ Res Lett 2013;8(2):024025. 链接1

[ 3 ] Berihun ML, Tsunekawa A, Haregeweyn N, Meshesha DT, Adgo E, Tsubo M, et al. Hydrological responses to land use/land cover change and climate variability in contrasting agro-ecological environments of the Upper Blue Nile basin, Ethiopia. Sci Total Environ 2019;689:347‒65. 链接1

[ 4 ] Kertész Á, Nagy LA, Balázs B. Effect of land use change on ecosystem services in Lake Balaton Catchment. Land Use Policy 2019;80:430‒8. 链接1

[ 5 ] Qiu L, Wu Y, Wang L, Lei X, Liao W, Hui Y, et al. Spatiotemporal response of the water cycle to land use conversions in a typical hilly‒gully basin on the Loess Plateau. China Hydrol Earth Syst Sci 2017;21(12):6485‒99. 链接1

[ 6 ] Zhang S, Wu Y, Sivakumar B, Mu X, Zhao F, Sun P, et al. Climate change-induced drought evolution over the past 50 years in the southern Chinese Loess Plateau. Environ Model Softw 2019;122:104519. 链接1

[ 7 ] Akujärvi A, Shvidenko A, Pietsch SA. Modelling the impacts of intensifying forest management on carbon budget across a long latitudinal gradient in Europe. Environ Res Lett 2019;14(3):034012. 链接1

[ 8 ] Sleeter BM, Liu J, Daniel C, Rayfield B, Sherba J, Hawbaker TJ, et al. Effects of contemporary land-use and land-cover change on the carbon balance of terrestrial ecosystems in the United States. Environ Res Lett 2018;‍13(4):045006. 链接1

[ 9 ] Zhao F, Wu Y, Qiu L, Sivakumar B, Zhang F, Sun Y, et al. Spatiotemporal features of the hydro-biogeochemical cycles in a typical loess gully watershed. Ecol Indic 2018;91:542‒54. 链接1

[10] Zhao S, Liu S, Sohl T, Young C, Werner J. Land use and carbon dynamics in the southeastern United States from 1992 to 2050. Environ Res Lett 2013;8(4):044022. 链接1

[11] Cheng L, Zhang L, Chiew FHS, Canadell JG, Zhao F, Wang YP, et al. Quantifying the impacts of vegetation changes on catchment storage-discharge dynamics using paired-catchment data. Water Resour Res 2017;53(7):5963‒79. 链接1

[12] Gutsch M, Lasch-Born P, Kollas C, Suckow F, Reyer CPO. Balancing trade-offs between ecosystem services in Germany’s forests under climate change. Environ Res Lett 2018;13(4):045012. 链接1

[13] Feng Z, Yang Y, Zhang Y, Zhang P, Li Y. Grain-for-green policy and its impacts on grain supply in West China. Land Use Policy 2005;22(4):301‒12. 链接1

[14] Piao S, Ciais P, Lomas M, Beer C, Liu H, Fang J, et al. Contribution of climate change and rising CO2 to terrestrial carbon balance in East Asia: a multi-model analysis. Global Planet Change 2011;75(3‒4):133‒42.

[15] Fu B, Liu Y, Lü Y, He C, Zeng Y, Wu B. Assessing the soil erosion control service of ecosystems change in the Loess Plateau of China. Ecol Complex 2011;8(4):284‒93. 链接1

[16] Lü Y, Fu B, Feng X, Zeng Y, Liu Y, Chang R, et al. A policy-driven large scale ecological restoration: quantifying ecosystem services changes in the Loess Plateau of China. PLoS ONE 2012;7(2):e31782. 链接1

[17] Xu Z, Xu J, Deng X, Huang J, Uchida E, Rozelle S. Grain for Green versus Grain: conflict between food security and conservation set-aside in China. World Dev 2006;34(1):130‒48. 链接1

[18] Chen Y, Wang K, Lin Y, Shi W, Song Y, He X. Balancing green and grain trade. Nat Geosci 2015;8(10):739‒41. 链接1

[19] Wang S, Fu B, Piao S, Lü Y, Ciais P, Feng X, et al. Reduced sediment transport in the Yellow River due to anthropogenic changes. Nat Geosci 2016;9(1):38‒41. 链接1

[20] Liang W, Fu B, Wang S, Zhang W, Jin Z, Feng X, et al. Quantification of the ecosystem carrying capacity on China’s Loess Plateau. Ecol Indic 2019;101:192‒202. 链接1

[21] Sun P, Wu Y, Gao J, Yao Y, Zhao F, Lei X, et al. Shifts in sediment transport regime caused by ecological restoration in the Middle Yellow River Basin. Sci Total Environ 2020;698:134261. 链接1

[22] Feng X, Fu B, Piao S, Wang S, Ciais P, Zeng Z, et al. Revegetation in China’s Loess Plateau is approaching sustainable water resource limits. Nat Clim Chang 2016;6(11):1019‒22. 链接1

[23] Gao G, Fu B, Wang S, Liang W, Jiang X. Determining the hydrological responses to climate variability and land use/cover change in the Loess Plateau with the Budyko framework. Sci Total Environ 2016;557‒558:331‒42.

[24] Bao Z, Zhang J, Wang G, Chen Q, Guan T, Yan X, et al. The impact of climate variability and land use/cover change on the water balance in the Middle Yellow River Basin. China J Hydrol 2019;577:123942. 链接1

[25] Li Q, Sun Y, Yuan W, Lyu S, Wan F. Streamflow responses to climate change and LUCC in a semi-arid watershed of Chinese Loess Plateau. J Arid Land 2017;9(4):609‒21. 链接1

[26] Duan L, Huang M, Zhang L. Differences in hydrological responses for different vegetation types on a steep slope on the Loess Plateau. China J Hydrol 2016;537:356‒66. 链接1

[27] Yin J, He F, Xiong Y, Qiu G. Effects of land use/land cover and climate changes on surface runoff in a semi-humid and semi-arid transition zone in northwest China. Hydrol Earth Syst Sci 2017;21(1):183‒96. 链接1

[28] Xiao J. Satellite evidence for significant biophysical consequences of the “Grain for Green” Program on the Loess Plateau in China. J Geophys Res Biogeosci 2014;119(12):2261‒75. 链接1

[29] Zhang X, Zhang L, Zhao J, Rustomji P, Hairsine P. Responses of streamflow to changes in climate and land use/cover in the Loess Plateau, China. Water Resour Res 2008;44(7):W00A07. 链接1

[30] Feng X, Fu B, Lu N, Zeng Y, Wu B. How ecological restoration alters ecosystem services: an analysis of carbon sequestration in China’‍s Loess Plateau. Sci Rep 2013;3(1):2846. 链接1

[31] Ge J, Pitman AJ, Guo W, Zan B, Fu C. Impact of revegetation of the Loess Plateau of China on the regional growing season water balance. Hydrol Earth Syst Sci Discuss 2020;24(2):515‒33. 链接1

[32] Zhang H, Huang Z. Bio-climatic division and restoration of the degraded ecosystem on the Loess Plateau. J Arid Land Res Environ 2001;15(1):64‒71.Chinese.

[33] Wu Y, Liu S, Qiu L, Sun Y. SWAT-DayCent coupler: an integration tool for simultaneous hydro-biogeochemical modeling using SWAT and DayCent. Environ Model Softw 2016;86:81‒90. 链接1

[34] Arnold JG, Srinivasan R, Muttiah RS, Williams JR. Large area hydrologic modeling and assessment—part I: model development. J Am Water Resour Assoc 1998;34(1):73‒89. 链接1

[35] Parton WJ, Hartman M, Ojima D, Schimel D. DAYCENT and its land surface submodel: description and testing. Global Planet Change 1998;19(1‒4):35‒48.

[36] Delgrosso S, Mosier A, Parton W, Ojima D. DAYCENT model analysis of past and contemporary soil NO and net greenhouse gas flux for major crops in the USA. Soil Tillage Res 2005;83(1):9‒24. 链接1

[37] Zhao F, Wu Y, Wang L, Liu S, Wei X, Xiao J, et al. Multi-environmental impacts of biofuel production in the US Corn Belt: a coupled hydro-biogeochemical modeling approach. J Clean Prod 2020;251:119561. 链接1

[38] Zhao F, Wu Y, Yao Y, Sun K, Zhang X, Winowiecki L, et al. Predicting the climate change impacts on water‒carbon coupling ycles for a loess hilly‒gully watershed. J Hydrol (Amst) 2020;581:124388. 链接1

[39] Zhao F, Wu Y, Sivakumar B, Long A, Qiu L, Chen J, et al. Climatic and hydrologic controls on net primary production in a semiarid loess watershed. J Hydrol 2019;568:803‒15. 链接1

[40] Gramig BM, Reeling CJ, Cibin R, Chaubey I. Environmental and economic trade-offs in a watershed when using corn stover for bioenergy. Environ Sci Technol 2013;47(4):1784‒91. 链接1

[41] Qiu L, Hao M, Wu Y. Potential impacts of climate change on carbon dynamics in a rain-fed agro-ecosystem on the Loess Plateau of China. Sci Total Environ 2017;577:267‒78. 链接1

[42] Oliveira DMS, Williams S, Cerri CEP, Paustian K. Predicting soil C changes over sugarcane expansion in Brazil using the DayCent model. Glob Change Biol Bioenergy 2017;9(9):1436‒46. 链接1

[43] Moriasi DN, Arnold JG, Van Liew MW, Bingner RL, Harmel RD, Veith TL. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Tran ASABE 2007;50(3):885‒900. 链接1

[44] Fu B, Wang S, Liu Y, Liu J, Liang W, Miao C. Hydrogeomorphic ecosystem responses to natural and anthropogenic changes in the Loess Plateau of China. Annu Rev Earth Planet Sci 2017;45(1):223‒43. 链接1

[45] Yang X, Sun W, Li P, Mu X, Gao P, Zhao G. Integrating agricultural land, water yield and soil conservation trade-offs into spatial land use planning. Ecol Indic 2019;104:219‒28. 链接1

[46] McVicar TR, Li L, Van Niel TG, Zhang L, Li R, Yang Q, et al. Developing a decision support tool for China‍’‍s re-vegetation program: simulating regional impacts of afforestation on average annual streamflow in the Loess Plateau. For Ecol Manage 2007;251(1-2):65‒81. 链接1

[47] Qiu J, Turner MG. Importance of landscape heterogeneity in sustaining hydrologic ecosystem services in an agricultural watershed. Ecosphere 2015;6(11):art229. 链接1

[48] Qin Y, Mueller ND, Siebert S, Jackson RB, AghaKouchak A, Zimmerman JB, et al. Flexibility and intensity of global water use flexibility and intensity of global water use. Nat Sustainability 2019;2(6):515‒23. 链接1

[49] Bieger K, Hörmann G, Fohrer N. The impact of land use change in the Xiangxi Catchment (China) on water balance and sediment transport. Reg Environ Change 2015;15(3):485‒98. 链接1

[50] Wang D, Yu X, Jia G, Wang H. Sensitivity analysis of runoff to climate variability and land-use changes in the Haihe Basin mountainous area of north China. Agric Ecosyst Environ 2019;269:193‒203. 链接1

[51] Yu B, Liu G, Liu Q, Wang X, Feng J, Huang C. Soil moisture variations at different topographic domains and land use types in the semi-arid Loess Plateau. China Catena 2018;165:125‒32. 链接1

[52] Pachepsky YA, Timlin DJ, Rawls WJ. Soil water retention as related to topographic variables. Soil Sci Soc Am J 2001;65(6):1787‒95. 链接1

[53] Huang Y, Chen L, Fu B, Huang Z, Gong J, Lu X. Effect of land use and topography on spatial variability of soil moisture in a gully catchment of the Loess Plateau. China Ecohydrology 2012;5(6):826‒33. 链接1

[54] Gao X, Wu P, Zhao X, Shi Y, Wang J, Zhang B. Soil moisture variability along transects over a well-developed gully in the Loess Plateau. China Catena 2011;87(3):357‒67. 链接1

[55] Xiao J, Sun G, Chen J, Chen H, Chen S, Dong G, et al. Carbon fluxes, evapotranspiration, and water use efficiency of terrestrial ecosystems in China. Agric Meteorol 2013;182‒183:76‒90.

[56] Zheng H, Li Y, Robinson BE, Liu G, Ma D, Wang F, et al. Using ecosystem service trade-offs to inform water conservation policies and management practices. Front Ecol Environ 2016;14(10):527‒32. 链接1

[57] Qiu J, Carpenter SR, Booth EG, Motew M, Zipper SC, Kucharik CJ, et al. Understanding relationships among ecosystem services across spatial scales and over time. Environ Res Lett 2018;13(5):054020. 链接1

[58] Kim JH, Jobbágy EG, Jackson RB. Trade-offs in water and carbon ecosystem services with land-use changes in grasslands. Ecol Appl 2016;26(6):1633‒44. 链接1

[59] Dymond JR, Ausseil AG, Ekanayake JC, Kirschbaum MUF. Tradeoffs between soil, water, and carbon—a national scale analysis from New Zealand. J Environ Manage 2012;95(1):124‒31. 链接1

[60] Li Y, Zhang L, Qiu J, Yan J, Wan L, Wang P, et al. Spatially explicit quantification of the interactions among ecosystem services. Landsc Ecol 2017;32(6):1181‒99. 链接1

[61] Bradford JB, D’Amato AW. Recognizing trade-offs in multi-objective land management. Front Ecol Environ 2012;10(4):210‒6. 链接1

[62] Jackson RB, Jobbagy EG, Avissar R, Roy SB, Barrett DJ, Cook CW, et al. Trading water for carbon with biological carbon sequestration. Science 2005;310(5756):1944‒7. 链接1

[63] Bai Y, Ochuodho TO, Yang J. Impact of land use and climate change on water-related ecosystem services in Kentucky, USA. Ecol Indic 2019;102:51‒64. 链接1

[64] Sun J, Wang H. Soil nitrogen and carbon determine the trade-off of the above- and below-ground biomass across alpine grasslands. Tibetan Plateau Ecol Indic 2016;60:1070‒6. 链接1

[65] Qiu J, Carpenter SR, Booth EG, Motew M, Zipper SC, Kucharik CJ, et al. Scenarios reveal pathways to sustain future ecosystem services in an agricultural landscape. Ecol Appl 2018;28(1):119‒34. 链接1

[66] Qiu J, Turner MG. Spatial interactions among ecosystem services in an urbanizing agricultural watershed. Proc Natl Acad Sci USA 2013;‍110(29):12149‒54. 链接1

[67] Sun P, Wu Y, Yang Z, Sivakumar B, Qiu L, Liu S, et al. Can ‘Grain-for-Green’ program really ensure a low sediment load on the Chinese Loess Plateau? Engineering 2019;5(5):1‒12. 链接1

相关研究