期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2022年 第19卷 第12期 doi: 10.1016/j.eng.2021.01.013

化学强化反冲洗缓解超滤处理含藻地表水的膜污染机制及调控——从小试到生产示范研究

a State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
b College of Architecture and Environment, Sichuan University, Chengdu 610207, China
c College of Architecture and Civil Engineering, Beijing University of Technology, Beijing 100124, China
d School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, China

收稿日期: 2020-07-22 修回日期: 2020-11-25 录用日期: 2021-01-25 发布日期: 2021-04-22

下一篇 上一篇

摘要

超滤(UF)工艺已广泛应用于饮用水处理中。然而,藻类及其分泌物会导致严重的膜污染,在实际生产过程中对超滤工艺构成巨大挑战。本文开发了一种简单实用的化学强化反冲洗(CEB)技术,考察了次氯酸钠(NaClO)、氯化钠(NaCl)、氢氧化钠(NaOH)、柠檬酸钠及其组合对藻源膜污染的控制效能。结果表明,化学清洗剂的类型是影响超滤膜水力不可逆膜污染(HIMF)的关键因素。其中,NaClO 对HIMF的控制效果最佳,其次是NaCl。此外,与单独使用NaClO相比,将NaClO与NaCl、NaOH或柠檬酸钠等组合使用对HIMF的控制效果并没有明显提升。NaClO 的最优投加量和投加方案为10 mg∙L−1,且最佳投加频次为每天两次。通过开展长周期的中试和生产实验进一步表明CEB技术可有效缓解藻源膜污染,尤其是HIMF。此外,与不添加化学药剂的常规水力反冲洗相比,CEB技术主要是通过氧化作用有效地去除包括生物聚合物、腐殖质和蛋白质类物质等在内的有机污染物,削弱有机污染物与膜表面之间的黏附力,从而显著降低HIMF。因此,CEB技术可在低药剂条件下有效地缓解藻源膜污染,是一种有效阻控超滤处理含藻地表水过程膜污染的方法。

补充材料

图片

图1

图2

图3

图4

图5

图6

图7

参考文献

[ 1 ] Haag AL. Algae bloom again. Nature 2007;447(7144):520‒1. 链接1

[ 2 ] Shen Q, Zhu J, Cheng L, Zhang J, Zhang Z, Xu X. Enhanced algae removal by drinking water treatment of chlorination coupled with coagulation. Desalination 2011;271(1‒3):236‒40.

[ 3 ] Shehata S, Badr S, Wahba S. Drinking water treatment options for eliminating freshwater algae. Int J Environ Stud 2002;59(6):679‒88. 链接1

[ 4 ] Ghernaout D, Badis A, Braikia G, Mataam N, Fekhar M, Ghernaout B, et al. Enhanced coagulation for algae removal in a typical algeria water treatment plant. Environ Eng Manag J 2017;16(10):2303‒15. 链接1

[ 5 ] Liu B, Qu F, Yu H, Tian J, Chen W, Liang H, et al. Membrane fouling and rejection of organics during algae-laden water treatment using ultrafiltration: a comparison between in situ pretreatment with Fe(II)/persulfate and ozone. Environ Sci Technol 2018;52(2):765‒74. 链接1

[ 6 ] Lee W, Westerhoff P. Dissolved organic nitrogen removal during water treatment by aluminum sulfate and cationic polymer coagulation. Water Res 2006;40(20):3767‒74. 链接1

[ 7 ] Liu B, Qu F, Liang H, Gan Z, Yu H, Li G, et al. Algae-laden water treatment using ultrafiltration: individual and combined fouling effects of cells, debris, extracellular and intracellular organic matter. J Membr Sci 2017;528:178‒86. 链接1

[ 8 ] Chang H, Liang H, Qu F, Liu B, Yu H, Du X, et al. Hydraulic backwashing for lowpressure membranes in drinking water treatment: a review. J Membr Sci 2017;540:362‒80. 链接1

[ 9 ] Chang H, Liu B, Yang B, Yang X, Guo C, He Q, et al. An integrated coagulationultrafiltration-nanofiltration process for internal reuse of shale gas flowback and produced water. Separ Purif Tech 2019;211:310‒21. 链接1

[10] Wang Z, Meng F, He X, Zhou Z, Huang LN, Liang S. Optimisation and performance of NaClO-assisted maintenance cleaning for fouling control in membrane bioreactors. Water Res 2014;53:1‒11. 链接1

[11] Li S, Heijman SGJ, Verberk JQJC, van Dijk JC. Influence of Ca and Na ions in backwash water on ultrafiltration fouling control. Desalination 2010;250(2):861‒4. 链接1

[12] Chang H, Liang H, Qu F, Shao S, Yu H, Liu B, et al. Role of backwash water composition in alleviating ultrafiltration membrane fouling by sodium alginate and the effectiveness of salt backwashing. J Membr Sci 2016;499:429‒41. 链接1

[13] Chang H, Liang H, Qu F, Ma J, Ren N, Li G. Towards a better hydraulic cleaning strategy for ultrafiltration membrane fouling by humic acid: effect of backwash water composition. J Environ Sci 2016;43:177‒86. 链接1

[14] Lee H, Amy G, Cho J, Yoon Y, Moon SH, Kim IS. Cleaning strategies for flux recovery of an ultrafiltration membrane fouled by natural organic matter. Water Res 2001;35(14):3301‒8. 链接1

[15] Lee S, Elimelech M. Salt cleaning of organic-fouled reverse osmosis membranes. Water Res 2007;41(5):1134‒42. 链接1

[16] Chae SR, Yamamura H, Ikeda K, Watanabe Y. Comparison of fouling characteristics of two different poly-vinylidene fluoride microfiltration membranes in a pilot-scale drinking water treatment system using precoagulation/sedimentation, sand filtration, and chlorination. Water Res 2008;42(8‒9):2029‒42.

[17] Decarolis J, Hong S, Taylor J. Fouling behavior of a pilot scale inside-out hollow fiber UF membrane during dead-end filtration of tertiary wastewater. J Membr Sci 2001;191(1‒2):165‒78.

[18] Vial D, Doussau G, Galindo R. Comparison of three pilot studies using Microza® membranes for Mediterranean seawater pre-treatment. Desalination 2003;156(1‒3):43‒50.

[19] Porcelli N, Judd S. Chemical cleaning of potable water membranes: a review. Separ Purif Tech 2010;71(2):137‒43. 链接1

[20] Yu H, Li X, Chang H, Zhou Z, Zhang T, Yang Y, et al. Performance of hollow fiber ultrafiltration membrane in a full-scale drinking water treatment plant in China: a systematic evaluation during 7-year operation. J Membr Sci 2020;613:118469. 链接1

[21] Yu W, Graham NJD. Performance of an integrated granular media—ultrafiltration membrane process for drinking water treatment. J Membr Sci 2015;492:164‒72. 链接1

[22] Tang X, Pronk W, Ding An, Cheng X, Wang J, Xie B, et al. Coupling GAC to ultralow-pressure filtration to modify the biofouling layer and bio-community: flux enhancement and water quality improvement. Chem Eng J 2018;333:289‒99. 链接1

[23] Nguyen AH, Tobiason JE, Howe KJ. Fouling indices for low pressure hollow fiber membrane performance assessment. Water Res 2011;45(8):2627‒37. 链接1

[24] Liang H, Gong W, Chen J, Li G. Cleaning of fouled ultrafiltration (UF) membrane by algae during reservoir water treatment. Desalination 2008;220(1‒3): 267‒72.

[25] Zhai S, Zhang W, Li T, Zhang W, Lv Lu, Pan B. Sodium hypochlorite assisted membrane cleaning: alterations in the characteristics of organic foulants and membrane permeability. Chemosphere 2018;211:139‒48. 链接1

[26] Zhang Y, Tian J, Liang H, Nan J, Chen Z, Li G. Chemical cleaning of fouled PVC membrane during ultrafiltration of algal-rich water. J Environ Sci 2011;23(4):529‒36. 链接1

[27] Zhou Z, He X, Zhou M, Meng F. Chemically induced alterations in the characteristics of fouling-causing bio-macromolecules—implications for the chemical cleaning of fouled membranes. Water Res 2017;108:115‒23. 链接1

[28] Li S, Heijman SGJ, Verberk JQJC, Verliefde ARD, Kemperman AJB, van Dijk JC, et al. Impact of backwash water composition on ultrafiltration fouling control. J Membr Sci 2009;344(1‒2):17‒25. 链接1

[29] Peter-Varbanets M, Gujer W, Pronk W. Intermittent operation of ultra-low pressure ultrafiltration for decentralized drinking water treatment. Water Res 2012;46(10):3272‒82. 链接1

[30] Kimura K, Shikato K, Oki Y, Kume K, Huber SA. Surface water biopolymer fractionation for fouling mitigation in low-pressure membranes. J Membr Sci 2018;554:83‒9. 链接1

[31] Chen W, Westerhoff P, Leenheer JA, Booksh K. Fluorescence excitation‒emission matrix regional integration to quantify spectra for dissolved organic matter. Environ Sci Technol 2003;37(24):5701‒10. 链接1

[32] Tang X, Ding An, Qu F, Jia R, Chang H, Cheng X, et al. Effect of operation parameters on the flux stabilization of gravity-driven membrane (GDM) filtration system for decentralized water supply. Environ Sci Pollut Res Int 2016;23(16):16771‒80. 链接1

[33] Brodeur G, Yau E, Badal K, Collier J, Ramachandran KB, Ramakrishnan S. Chemical and physicochemical pretreatment of lignocellulosic biomass: a review. Enzyme Res 2011;2011:1‒17. 链接1

[34] Ding J, Wang S, Xie P, Zou Y, Wan Y, Chen Y, et al. Chemical cleaning of algaefouled ultrafiltration (UF) membrane by sodium hypochlorite (NaClO): characterization of membrane and formation of halogenated by-products. J Membr Sci 2020;598:117662. 链接1

[35] Wang Z, Ding J, Xie P, Chen Y, Wan Y, Wang S. Formation of halogenated byproducts during chemical cleaning of humic acid-fouled UF membrane by sodium hypochlorite solution. Chem Eng J 2018;332:76‒84. 链接1

相关研究