期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2022年 第17卷 第10期 doi: 10.1016/j.eng.2021.02.024

考虑垫片形状和尺寸效应的珊瑚混凝土劈裂抗拉性能的三维细观研究

a Department of Civil and Airport Engineering, Civil Aviation College, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
b School of Civil Engineering, Southeast University, Nanjing 210096, China
c Engineering Research Center of Safety and Protection of Explosion and Impact of Ministry of Education (ERCSPEIME), Southeast University, Nanjing 211189, China
d Army Engineering University of PLA, Nanjing 210007, China

收稿日期: 2020-06-17 00:00:00 修回日期: 2021-01-19 00:00:00 录用日期: 2021-02-02 00:00:00 发布日期: 2021-12-14

下一篇 上一篇

摘要

珊瑚混凝土(CAC)作为一种新型建筑材料,已经在岛礁工程结构建设领域引起了极大的关注。为了研究CAC的静态劈裂抗拉性能,本文提出了一种考虑骨料形状和空间分布随机性的三维(3D)随机混凝土细观模型,影响因素包括试件形状和支承垫片尺寸。我们建立了12 个不同的混凝土细观模型,按照试件形状可分为两种,即边长为150 mm的立方体和尺寸为ϕ150 mm×300 mm的圆柱体。其中,支承垫片宽度为6 mm、9 mm、12 mm、15 mm、18 mm和20 mm。本文系统分析和讨论了试件几何形状和垫片宽度对CAC劈裂抗拉性能的影响规律,研究内容包括混凝土开裂过程、最终破坏模式和劈裂抗拉强度(fst)。结果表明:本文所开发的细观模型具有很高的可靠性,并确定了适用于CAC劈裂抗拉性能模拟和预测的最优计算参数。CAC的fst值与试件形状和垫片宽度直接相关。其中,在垫片尺寸相同的情况下,立方体CAC试件的fst值要略高于圆柱体模型,表明可以采用断裂面积的差异来解释试件形状效应对CAC fst值的影响规律。此外,当垫片的相对宽度由0.04 增加到0.13 时,CAC的fst值会呈现逐渐增大的趋势。基于弹性力学理论,本文初步确定了不同垫片宽度条件下CAC fst的取值范围,这对于研究CAC的抗拉性能具有重要意义。

图片

图1

图2

图3

图4

图5

图6

图7

图8

图9

图10

图11

图12

图13

图14

参考文献

[ 1 ] Wright PJF. Comments on an indirect tensile test on concrete cylinders. Mag Concr Res 1955;7(20):87‒96. 链接1

[ 2 ] Guo Y, Gao G, Jing L, Shim VPW. Quasi-static and dynamic splitting of high-strength concretes-tensile stress-strain response and effects of strain rate. Int J Impact Eng 2019;125:188‒211. 链接1

[ 3 ] Jin L, Yu W, Du X, Yang W. Mesoscopic numerical simulation of dynamic size effect on the splitting-tensile strength of concrete. Eng Fract Mech 2019;209:317‒32. 链接1

[ 4 ] Chen X, Ge L, Zhou J, Wu S. Dynamic Brazilian test of concrete using split Hopkinson pressure bar. Mater Struct 2017;50:1. 链接1

[ 5 ] Heilmann HG. Relations between tensile and compressive strength of concrete. Beton 19(2): 68‒70. German.

[ 6 ] Carneiro FL, Barcellos A. Tensile strength of concrete. RILEM Bull 1949;13:98‒125. French.

[ 7 ] ASTM C496-90. Standard test method for splitting tensile strength of cylindrical concrete specimens. West Conshohocken: ASTM International; 1990.

[ 8 ] BS 1881-117. Testing concrete—part 117: method for the determination of tensile splitting strength. British Standard. London: British Standards Institution; 1983.

[ 9 ] Iso 4108. Concrete determination of tensile splitting strength of test specimen. ISO standard. Geneva: International Organization for Standardization; 1980.

[10] GB/T 50081. Standard for test method of mechanical properties on ordinary concrete. Chinese standard. Beijing: China Architecture and Building Press; 2019.

[11] Nilsson S. The tensile strength of concrete determined by splitting tests on cubes. RILEM Bull 1961;11:63‒7.

[12] Ince R. Determination of concrete fracture parameters based on peak-load method with diagonal split-tension cubes. Eng Fract Mech 2012;82:100‒14. 链接1

[13] Rocco CG, Guinea GV, Planas J, Elices M. The effect of the boundary conditions on the cylinder splitting strength. In: Fracture Mechanics of Concrete Structures. Freiburg: Aedificatio Publishers; 1995. p. 75‒84. 链接1

[14] Zhou H, Che Y, Chen G, Song Y. Size effect on tensile strength of concrete cubes and cylinders. Concrete 2010;8:13‒5. Chinese.

[15] Davies J, Bose D. Stress distribution in splitting test. ACI J Proc 1968;65(8):662‒9. 链接1

[16] Tang T. Effects of load-distributed width on split tension of unnotched and notched cylindrical specimens. J Test Eval 1994;22(5):401‒9. 链接1

[17] Rocco C, Guinea GV, Planas J, Elices M. Size effect and boundary condition in the Brazilian tests: theoretical analysis. Mater Struct 1999;32(6):437‒44. 链接1

[18] Rocco C, Guinea GV, Planas J, Elices M. Size effect and boundary condition in the Brazilian tests: experimental verification. Mater Struct 1999;32(3):210‒7. 链接1

[19] Rocco C, Guinea GV, Planas J, Elices M. Review of the splitting-test standards from a fracture mechanics point of view. Cement Concr Res 2001;31(1):73‒82. 链接1

[20] Wu Z, Yu H, Ma H, Zhang J, Da B, Zhu H. Rebar corrosion in coral aggregate concrete: determination of chloride threshold by LPR. Corros Sci 2020;163:108238. 链接1

[21] Wu Z, Zhang J, Yu H, Ma H, Chen L, Dong W, et al. Coupling effect of strain rate and specimen size on the compressive properties of coral aggregate concrete: a 3D mesoscopic study. Compos Part B Eng 2020;200:108299. 链接1

[22] Lorman WK. Characteristics of coral aggregate from selected locations in the Pacific Ocean area. Report. Port Hueneme: USN Civil Engineering Laboratory; 1958. Report No.: TN-335A.

[23] Lorman WK. Characteristics of coral mortars. Report. Port Hueneme: US Naval Civil Engineering Laboratory; 1960. Report No.:TR-041. 链接1

[24] Lorman WK. Coral and Coral Concrete. Report. Port Hueneme: US Naval Civil Engineering Laboratory; 1960. Report No.: TR-068.

[25] Scholer CH. Examination and study of certain structures in the Pacific Ocean area. Report. Port Hueneme: US Naval Civil Engineering Laboratory. 1959. Report No.: NBy-3171.

[26] Howdyshell PA. The use of coral as an aggregate for Portland cement concrete structures. Report. Urbana-Champaign: US Army Construction Engineering Research Laboratory; 1974.

[27] Yu H, Da B, Ma H, Zhu H, Yu Q, Ye H, et al. Durability of concrete structures in tropical atoll environment. Ocean Eng 2017;135:1‒10. 链接1

[28] Da B, Yu H, Ma H, Tan Y, Mi R, Dou X. Experimental investigation of whole stress-strain curves of coral concrete. Constr Build Mater 2016;122:81‒9. 链接1

[29] Mi R, Yu H, Ma H. Study on the mechanical property of the coral concrete. Ocean Eng 2016;34:48‒54.

[30] Ma H, Wu Z, Zhang J, Yue C. Experimental and three-dimensional mesoscopic investigation of coral aggregate concrete under dynamic splitting-tensile loading. Mater Struct 2020;53(1):12. 链接1

[31] Suchorzewski J, Tejchman J, Nitka M, Bobiński J. Meso-scale analyses of size effect in brittle materials using DEM. Granul Matter 2019;21:9. 链接1

[32] Skarzyński L, Nitka M, Tejchman J. Modelling of concrete fracture at aggregate level using FEM and DEM based on X-ray lCT images of internal structure. Eng Fract Mech 2015;147:13‒35. 链接1

[33] Zhou X, Hao H. Mesoscale modelling of concrete tensile failure mechanism at high strain rates. Comput Struc 2008;86(21‒22):2013‒26.

[34] Schlangen E, Van Mier JGM. Experimental and numerical analysis of micromechanisms of fracture of cement-based composites. Cement Concr Compos 1992;14(2):105‒18. 链接1

[35] Bažant ZP, Tabbara MR, Kazemi MT, Pijaudier-Cabot G. Random particle models for fracture of aggregate or fiber composites. J Eng Mech 1990;116(8):1686‒705. 链接1

[36] Mohamed AR, Hansen W. Micromechanical modeling of concrete response under static loading—part 1: model development and validation. ACI Mater J 1999;96(2):196‒203. 链接1

[37] Yan P, Zhang J, Fang Q, Zhang Y, Fan J. 3D numerical modelling of solid particles with randomness in shape considering convexity and concavity. Powder Technol 2016;301:131‒40. 链接1

[38] Xu W, Chen H. Numerical investigation of effect of particle shape and particle size distribution on fresh cement paste microstructure via random sequential packing of dodecahedral cement particles. Comput Struc 2013;114:35‒45. 链接1

[39] Wittmann FH, Roelfstra PE, Sadouki H. Simulation and analysis of composite structures. Mater Sci Eng 1985;68(2):239‒48. 链接1

[40] Wang ZM, Kwan AKH, Chan HC. Mesoscopic study of concrete I: generation of random aggregate structure and finite element mesh. Comput Struc 1999;70(5):533‒44. 链接1

[41] Häfner S, Eckardt S, Luther T, Könke C. Mesoscale modelling of concrete: geometry and numerics. Comput Struc 2006;84(7):450‒61. 链接1

[42] Wriggers P, Moftah SO. Mesoscale models for concrete: homogenisation and damage behaviour. Finite Elem Anal Des 2006;42(7):623‒36. 链接1

[43] Ma H, Song L, Xu W. A novel numerical scheme for random parameterized convex aggregate models with a high-volume fraction of aggregates in concrete-like granular materials. Comput Struc 2018;209:57‒64. 链接1

[44] Fang Q, Zhang J. 3D numerical modeling of projectile penetration into rock-rubble overlays accounting for random distribution of rock-rubble. Int J Impact Eng 2014;63:118‒28. 链接1

[45] Chen G, Hao Y, Hao H. 3D meso-scale modelling of concrete material in spall tests. Mater Struct 2015;48(6):1887‒99. 链接1

[46] Xu Z, Hao H, Li H. Mesoscale modelling of dynamic tensile behaviour of fibre reinforced concrete with spiral fibres. Cement Concr Res 2012;42(11):1475‒93. 链接1

[47] Guo R, Ren H, Zhang L, Long Z, Jiang X, Wu X, et al. Direct dynamic tensile study of concrete materials based on mesoscale model. Int J Impact Eng 2020;143:103598. 链接1

[48] Malvar LJ, Crawford JE, Wesevich JW, Simons D. A new concrete material model for DYNA3D—release II: shear dilation and directional rate enhancements. Report. Glendale: Karagozian and Case Structural Engineers; 1996. Report No.: TM-96-2.1. 链接1

[49] Malvar LJ, Crawford JE, Morrill KB. K&C concrete material model—release III: Automated generation of material model input. Report. Glendale: Karagozian and Case Structural Engineers; 2000. Report No.: TR-99-24-B1.

[50] Jin Y, Chen T, Meng Q, Hu M. Difference of coral skeletal structure revealed by compressive strength measurements. J Trop Oceanogr 2017;36(2):33‒9.

[51] Wang X, Wang R, Meng Q, Chen J. Research on characteristics of coral reef calcareous rock in Nansha Islands. Chin J Rocks Mech Eng 2008; 27:2221‒6. 链接1

[52] Kim SM, Abu Al-Rub RK. Meso-scale computational modeling of the plastic-damage response of cementitious composites. Cement Concr Res 2011;41(3):339‒58. 链接1

[53] Wu Z, Yu H, Ma H. Study on the mechanical properties of new coral aggregate seawater concrete. Ocean Eng 2018;36(3):59‒68.

[54] Yuan Y. Mix design and property of coral aggregate concrete [dissertation]. Nanjing: Nanjing University of Aeronautics and Astronautics; 2015.

[55] Zhou Z, Zou Y, Li X, Jiang Y. Stress evolution and failure process of Brazilian disc under impact. J Cent South Univ 2013;20(1):172‒7. 链接1

[56] Neville AM. Properties of concrete. London: Pitman Press; 1981.

[57] Kadleček V, Modrý S, Kadleček V. Size effect of test specimens on tensile splitting strength of concrete: general relation. Mater Struct 2002;35(1):28‒34. 链接1

[58] Malhotra VM. Effect of specimen size on tensile strength of concrete. Appl Clin Inform J 1970;67(6):467‒9. 链接1

[59] Neville AM. General relation for strengths of concrete specimens of different shapes and sizes. Appl Clin Inform J 1966;63(10):1095‒109. 链接1

[60] Olesen JF, Ostergaard L, Stang H. Nonlinear fracture mechanics and plasticity of the split cylinder test. Mater Struct 2006;2006(39):421‒32. 链接1

相关研究