期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2022年 第15卷 第8期 doi: 10.1016/j.eng.2021.03.015

通过原位观察揭示人体肠道微生物组的重建和动态变化

a CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
b University of Chinese Academy of Sciences, Beijing 100049, China
c Medical Center for Digestive Diseases, the Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China
d Clinical Trial Center Office, the Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China
e State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
f Key Lab of Holistic Integrative Enterology, Nanjing Medical University, Nanjing 210011, China

# These authors contributed equally to this work.

收稿日期: 2020-08-03 修回日期: 2021-03-02 录用日期: 2022-03-16 发布日期: 2021-05-06

下一篇 上一篇

摘要

人体肠道微生物组主要通过使用粪便样本进行研究,这种做法已经得到了关于胃肠道微生物群落的组成和功能的重要知识。然而,这种对粪便材料的依赖限制了对胃肠道其他位置(原位)微生物动力学的研究,并且粪便样本不能随时获得,这也阻碍了在更精细的时间尺度(如小时)下进行分析。在我们的研究中,我们利用结肠途径经内镜肠内导管(一种最初为粪便微生物群移植开发的技术)每天两次对回盲部微生物组进行采样;然后对这些样品进行宏基因组和宏转录组学分析。从5 名健康志愿者身上共收集了43 份回盲部样本及28 份尿液和粪便样本。在5 名志愿者中分析的回盲部和粪便微生物组被发现在宏基因组分析中相似,但它们的活性基因(宏转录组)被发现高度不同。两种微生物组在泻药暴露后都受到干扰;随着时间的推移,它们表现出与治疗前状态的差异减少,从而证明了作为肠道微生物组的先天特性——恢复力,尽管它们在我们的观察时间窗口内没有完全恢复。白天和夜间对回盲部微生物组的采样显示,在一系列细菌种类和功能途径中存在昼夜节律,特别是与短链脂肪酸产生相关的细菌,如痤疮丙酸杆菌和辅酶A生物合成II。自相关分析和波动分解进一步表明了昼夜振荡的显著周期性。粪便和尿液样本中的代谢组学分析反映出了肠道微生物组的扰动和恢复,表明肠道微生物组对参与宿主健康的诸多关键代谢物的重要贡献。这项研究为人体肠道微生物组及其内在恢复力和昼夜节律以及这些对宿主的潜在后果提供了新的见解。

补充材料

图片

图1

图2

图3

图4

图5

图6

参考文献

[ 1 ] Lynch JB, Hsiao EY. Microbiomes as sources of emergent host phenotypes. Science 2019; 365(6460):1405‒9. 链接1

[ 2 ] Donaldson GP, Lee SM, Mazmanian SK. Gut biogeography of the bacterial microbiota. Nat Rev Microbiol 2016; 14(1):20‒32. 链接1

[ 3 ] Stearns JC, Lynch MDJ, Senadheera DB, Tenenbaum HC, Goldberg MB, Cvitkovitch DG, et al. Bacterial biogeography of the human digestive tract. Sci Rep 2011; 1(1):170. 链接1

[ 4 ] Yasuda K, Oh K, Ren B, Tickle T, Franzosa E, Wachtman L, et al. Biogeography of the intestinal mucosal and lumenal microbiome in the rhesus macaque. Cell Host Microbe 2015; 17(3):385‒91. 链接1

[ 5 ] Zeng Y, Zeng D, Zhou Y, Niu L, Deng J, Li Y, et al. Microbial biogeography along the gastrointestinal tract of a red panda. Front Microbiol 2018; 9:1411. 链接1

[ 6 ] Ahern PP, Maloy KJ. Understanding immune‒microbiota interactions in the intestine. Immunology 2020; 159(1):4‒14. 链接1

[ 7 ] Manuzak JA, Zevin AS, Cheu R, Richardson B, Modesitt J, Hensley-McBain T, et al. Antibiotic-induced microbiome perturbations are associated with significant alterations to colonic mucosal immunity in rhesus macaques. Mucosal Immunol 2020; 13(3):471‒80. 链接1

[ 8 ] Tropini C, Moss EL, Merrill BD, Ng KM, Higginbottom SK, Casavant EP, et al. Transient osmotic perturbation causes long-term alteration to the gut microbiota. Cell 2018; 173(7):1742‒54.e17. 链接1

[ 9 ] Wang Y, Kuang Z, Yu X, Ruhn KA, Kubo M, Hooper LV. The intestinal microbiota regulates body composition through NFIL3 and the circadian clock. Science 2017; 357(6354):912‒6. 链接1

[10] Kuang Z, Wang Y, Li Y, Ye C, Ruhn KA, Behrendt CL, et al. The intestinal microbiota programs diurnal rhythms in host metabolism through histone deacetylase 3. Science 2019; 365(6460):1428‒34. 链接1

[11] Gasparrini AJ, Crofts TS, Gibson MK, Tarr PI, Warner BB, Dantas G. Antibiotic perturbation of the preterm infant gut microbiome and resistome. Gut Microbes 2016; 7(5):443‒9. 链接1

[12] David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 2014; 505(7484):559‒63. 链接1

[13] Johnson AJ, Vangay P, Al-Ghalith GA, Hillmann BM, Ward TL, Shields-Cutler RR, et al. Daily sampling reveals personalized diet‒microbiome associations in humans. Cell Host Microbe 2019; 25(6):789‒802.e5. 链接1

[14] Wu GD, Chen J, Hoffmann C, Bittinger K, Chen YY, Keilbaugh SA, et al. Linking long-term dietary patterns with gut microbial enterotypes. Science 2011; 334 (6052):105‒8. 链接1

[15] Zimmermann M, Zimmermann-Kogadeeva M, Wegmann R, Goodman AL. Mapping human microbiome drug metabolism by gut bacteria and their genes. Nature 2019; 570(7762):462‒7. 链接1

[16] Maier L, Pruteanu M, Kuhn M, Zeller G, Telzerow A, Anderson EE, et al. Extensive impact of non-antibiotic drugs on human gut bacteria. Nature 2018; 555(7698):623‒8. 链接1

[17] Haak BW, Lankelma JM, Hugenholtz F, Belzer C, de Vos WM, Wiersinga WJ. Long-term impact of oral vancomycin, ciprofloxacin and metronidazole on the gut microbiota in healthy humans. J Antimicrob Chemother 2019; 74(3):782‒6. 链接1

[18] Zhernakova A, Kurilshikov A, Bonder MJ, Tigchelaar EF, Schirmer M, Vatanen T, et al. LifeLines cohort study. Population-based metagenomics analysis reveals markers for gut microbiome composition and diversity. Science 2016; 352(6285):565‒9. 链接1

[19] Falony G, Joossens M, Vieira-Silva S, Wang J, Darzi Y, Faust K, et al. Population- level analysis of gut microbiome variation. Science 2016; 352(6285):560‒4. 链接1

[20] Becattini S, Taur Y, Pamer EG. Antibiotic-induced changes in the intestinal microbiota and disease. Trends Mol Med 2016; 22(6):458‒78. 链接1

[21] Li SS, Zhu A, Benes V, Costea PI, Hercog R, Hildebrand F, et al. Durable coexistence of donor and recipient strains after fecal microbiota transplantation. Science 2016; 352(6285):586‒9. 链接1

[22] Bharucha AE, Lacy BE. Mechanisms, evaluation, and management of chronic constipation. Gastroenterology 2020; 158(5):1232‒49.e3. 链接1

[23] Luthra P, Camilleri M, Burr NE, Quigley EMM, Black CJ, Ford AC. Efficacy of drugs in chronic idiopathic constipation: a systematic review and network meta-analysis. Lancet Gastroenterol Hepatol 2019; 4(11):831‒44. 链接1

[24] Lozupone CA, Stombaugh JI, Gordon JI, Jansson JK, Diversity Knight R., stability and resilience of the human gut microbiota. Nature 2012; 489(7415):220‒30. 链接1

[25] Relman DA. The human microbiome: ecosystem resilience and health. Nutr Rev 2012; 70(Suppl 1):S2‒9. 链接1

[26] Peng Z, Xiang J, He Z, Zhang T, Xu L, Cui B, et al. Colonic transendoscopic enteral tubing: a novel way of transplanting fecal microbiota. Endosc Int Open 2016; 4(6):E610‒3.

[27] Ding X, Li Q, Li P, Zhang T, Cui B, Ji G, et al. Long-term safety and efficacy of fecal microbiota transplant in active ulcerative colitis. Drug Saf 2019; 42(7):869‒80. 链接1

[28] Fecal Microbiota Transplantation-standardization Study Group. Nanjing consensus on methodology of washed microbiota transplantation. Chin Med J 2020; 133(19):2330‒2. 链接1

[29] Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 2014; 30(15):2114‒20. 链接1

[30] Franzosa EA, McIver LJ, Rahnavard G, Thompson LR, Schirmer M, Weingart G, et al. Species-level functional profiling of metagenomes and metatranscriptomes. Nat Methods 2018; 15(11):962‒8. 链接1

[31] Segata N, Waldron L, Ballarini A, Narasimhan V, Jousson O, Huttenhower C. Metagenomic microbial community profiling using unique clade-specific marker genes. Nat Methods 2012; 9(8):811‒4. 链接1

[32] Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods 2012; 9(4):357‒9. 链接1

[33] Dunn WB, Broadhurst D, Begley P, Zelena E, Francis-McIntyre S, Anderson N, et al. Procedures for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry. Nat Protoc 2011; 6(7):1060‒83. 链接1

[34] Hou W, Zhong D, Zhang P, Li Y, Lin M, Liu G, et al. A strategy for the targeted metabolomics analysis of 11 gut microbiota‒host co-metabolites in rat serum, urine and feces by ultra high performance liquid chromatography-tandem mass spectrometry. J Chromatogr A 2016; 1429:207‒17.

[35] Rohart F, Gautier B, Singh A, Lê Cao KA, Schneidman D. mixOmics: an R package for ‘omics feature selection and multiple data integration. PLOS Comput Biol 2017; 13(11):e1005752. 链接1

[36] Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 2003; 13(11):2498‒504. 链接1

[37] Mehta RS, Abu-Ali GS, Drew DA, Lloyd-Price J, Subramanian A, Lochhead P, et al. Stability of the human faecal microbiome in a cohort of adult men. Nat Microbiol 2018; 3(3):347‒55. 链接1

[38] Schirmer M, Franzosa EA, Lloyd-Price J, McIver LJ, Schwager R, Poon TW, et al. Dynamics of metatranscription in the inflammatory bowel disease gut microbiome. Nat Microbiol 2018; 3(3):337‒46. 链接1

[39] Chong J, Wishart DS, Xia J. Using MetaboAnalyst 4.0 for comprehensive and integrative metabolomics data analysis. Curr Protoc Bioinformatics 2019; 68(1):e86. 链接1

[40] Jin M, Kalainy S, Baskota N, Chiang D, Deehan EC, McDougall C, et al. Faecal microbiota from patients with cirrhosis has a low capacity to ferment non- digestible carbohydrates into short-chain fatty acids. Liver Int 2019; 39(8):1437‒47. 链接1

[41] Vital M, Howe A, Bergeron N, Krauss RM, Jansson JK, Tiedje JM. Metagenomic insights into the degradation of resistant starch by human gut microbiota. Appl Environ Microbiol 2018; 84(23):e01562‒18. 链接1

[42] Takahashi K, Nishida A, Fujimoto T, Fujii M, Shioya M, Imaeda H, et al. Reduced abundance of butyrate-producing bacteria species in the fecal microbial community in Crohn’s disease. Digestion 2016; 93(1):59‒65. 链接1

[43] Rosario D, Benfeitas R, Bidkhori G, Zhang C, Uhlen M, Shoaie S, et al. Understanding the representative gut microbiota dysbiosis in metformintreated type 2 diabetes patients using genome-scale metabolic modeling. Front Physiol 2018; 9:775. 链接1

[44] Liu H, Han M, Li SC, Tan G, Sun S, Hu Z, et al. Resilience of human gut microbial communities for the long stay with multiple dietary shifts. Gut 2019; 68(12):2254‒5. 链接1

[45] Ng KM, Aranda-Díaz A, Tropini C, Frankel MR, Van Treuren W, O’Loughlin CT, et al. Recovery of the gut microbiota after antibiotics depends on host diet, community context, and environmental reservoirs. Cell Host Microbe 2019; 26(5):650‒65.e4. 链接1

[46] Liu C, Zhang J, Li M, Zhao L, Ji C, Ma Q. Alterations and structural resilience of the gut microbiota under dietary fat perturbations. J Nutr Biochem 2018; 61:91‒100. 链接1

[47] MacPherson CW, Mathieu O, Tremblay J, Champagne J, Nantel A, Girard SA, et al. Gut bacterial microbiota and its resistome rapidly recover to basal state levels after short-term amoxicillin-clavulanic acid treatment in healthy adults. Sci Rep 2018; 8(1):11192. 链接1

[48] Goethel A, Turpin W, Rouquier S, Zanello G, Robertson SJ, Streutker CJ, et al. Nod2 influences microbial resilience and susceptibility to colitis following antibiotic exposure. Mucosal Immunol 2019; 12(3):720‒32. 链接1

[49] Mortensen MS, Hebbelstrup Jensen B, Williams J, Brejnrod AD, O‍’‍Brien Andersen L, Röser D, et al. Stability and resilience of the intestinal microbiota in children in daycare—a 12 month cohort study. BMC Microbiol 2018; 18(1):223. 链接1

[50] Louis P, Flint HJ. Diversity, metabolism and microbial ecology of butyrate- producing bacteria from the human large intestine. FEMS Microbiol Lett 2009; 294(1):1‒8. 链接1

[51] Tahara Y, Yamazaki M, Sukigara H, Motohashi H, Sasaki H, Miyakawa H, et al. Gut microbiota-derived short chain fatty acids induce circadian clock entrainment in mouse peripheral tissue. Sci Rep 2018; 8(1):1395. 链接1

[52] Segers A, Desmet L, Thijs T, Verbeke K, Tack J, Depoortere I. The circadian clock regulates the diurnal levels of microbial short-chain fatty acids and their rhythmic effects on colon contractility in mice. Acta Physiol 2019; 225(3): e13193. 链接1

[53] Fellows R, Denizot J, Stellato C, Cuomo A, Jain P, Stoyanova E, et al. Microbiota derived short chain fatty acids promote histone crotonylation in the colon through histone deacetylases. Nat Commun 2018; 9(1):105. 链接1

[54] Waldecker M, Kautenburger T, Daumann H, Busch C, Schrenk D. Inhibition of histone-deacetylase activity by short-chain fatty acids and some polyphenol metabolites formed in the colon. J Nutr Biochem 2008; 19 (9):587‒93. 链接1

[55] Zhang T, Long C, Cui B, Buch H, Wen Q, Li Q, et al. Colonic transendoscopic tube-delivered enteral therapy (with video): a prospective study. BMC Gastroenterol 2020; 20(1):135. 链接1

相关研究