期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2022年 第10卷 第3期 doi: 10.1016/j.eng.2021.05.022

数据中心设计——一种微结构材料体系设计新方法

a Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA
b Department of Mechanical and Aerospace Engineering, University of California, Irvine, CA 92697, USA

收稿日期: 2020-08-10 修回日期: 2020-10-14 录用日期: 2021-05-11 发布日期: 2022-02-18

下一篇 上一篇

摘要

在高通量计算材料科学时代,材料基因组计划的核心是为计算材料设计建立数据处理、材料结构和材料属性(PSP)之间的关系。近年来,在数据获取和存储,微结构表征和重建(MCR),机器学习(ML),材料建模和仿真,数据处理、材料制造和实验方面取得的技术进步,显著提升了研究人员在PSP关系的建立和逆向材料设计方面的能力。本文将从设计研究的角度审视这些进步。特别介绍了一种数据中心设计方法,并从本质上将该方法分为三个方面:设计表征、设计评估和设计合成。每个方面的发展都由领域知识指导并从中受益。因此,针对每个方面,提出了一种应用广泛的计算方法,这些方法的集成实现了以数据为中心的材料发现和设计。

图片

图1

图2

图3

图4

图5

图6

图7

图8

图9

图10

图11

参考文献

[ 1 ] National Science and Technology Council (US). Materials genome initiative for global competitiveness [Internet]. Washington DC: Executive Office of the President, National Science and Technology Council; 2011 Jun 24. Available from: https://www.mgi.gov/sites/ default/files/documents/materials_genome_initiative-final.pdf. 链接1

[ 2 ] Olson GB. Preface to the viewpoint set on: the materials genome. Scr Mater 2014;70:1–2. 链接1

[ 3 ] Ward C. Materials Genome Initiative for global competitiveness. In: Proceedings of the 23rd Advanced Aerospace Materials and Processes (AeroMat) Conference and Exposition; 2012 Jun 18–21; Charlotte, NC, USA; 2012.

[ 4 ] McDowell DL, Kalidindi SR. The materials innovation ecosystem: a key enabler for the materials genome initiative. MRS Bull 2016;41(4):326–37. 链接1

[ 5 ] Olson GB. Computational design of hierarchically structured materials. Science 1997;277(5330):1237–42. 链接1

[ 6 ] Olson GB. Designing a new material world. Science 2000;288(5468):993–8. 链接1

[ 7 ] Fullwood DT, Niezgoda SR, Adams BL, Kalidindi SR. Microstructure sensitive design for performance optimization. Prog Mater Sci 2010;55(6):477–562. 链接1

[ 8 ] Committee on Integrated Computational Materials Engineering.. Integrated computational materials engineering: a transformational discipline for improved competitiveness and national security. Washington DC: National Academies Press; 2008. 链接1

[ 9 ] Torquato S. Random heterogeneous materials: microstructure and macroscopic properties. New York: Springer-Verlag New York; 2002.

[10] Kumar H, Briant CL, Curtin WA. Using microstructure reconstruction to model mechanical behavior in complex microstructures. Mech Mater 2006;38(8- 10):818–32. 链接1

[11] Agrawal A, Choudhary A. Perspective: materials informatics and big data: realization of the ‘‘fourth paradigm” of science in materials science. APL Mater 2016;4(5):053208. 链接1

[12] Curtarolo S, Hart GLW, Nardelli MB, Mingo N, Sanvito S, Levy O. The highthroughput highway to computational materials design. Nat Mater 2013;12 (3):191–201. 链接1

[13] Zhao H, Li X, Zhang Y, Schadler LS, Chen W, Brinson LC. Perspective: NanoMine: a material genome approach for polymer nanocomposites analysis and design. APL Mater 2016;4(5):053204. 链接1

[14] Zhao H, Wang Y, Lin A, Hu B, Yan R, McCusker J, et al. NanoMine schema: an extensible data representation for polymer nanocomposites. APL Mater 2018;6(11):111108. 链接1

[15] Jain A, Ong SP, Hautier G, Chen W, Richards WD, Dacek S, et al. Commentary: the materials project: a materials genome approach to accelerating materials innovation. APL Mater 2013;1(1):011002. 链接1

[16] Saal JE, Kirklin S, Aykol M, Meredig B, Wolverton C. Materials design and discovery with high-throughput density functional theory: the open quantum materials database (OQMD). JOM 2013;65(11):1501–9. 链接1

[17] Curtarolo S, Setyawan W, Wang S, Xue J, Yang K, Taylor RH, et al. AFLOWLIB. ORG: a distributed materials properties repository from high-throughput ab initio calculations. Comput Mater Sci 2012;58:227–35. 链接1

[18] Bostanabad R. Reconstruction of 3D microstructures from 2D images via transfer learning. Comput Aided Des 2020;128:102906. 链接1

[19] Koch W, Holthausen MC. A chemist’s guide to density functional theory. 2nd ed. Medford: John Wiley & Sons; 2015. 链接1

[20] Parr RG. Density functional theory of atoms and molecules. In: Fukui K, Pullman A, editors. Horizons of quantum chemistry. Dordrecht: Springer; 1980. p. 5–15. 链接1

[21] Duan K, He Y, Li Y, Liu J, Zhang J, Hu Y, et al. Machine-learning assisted coarsegrained model for epoxies over wide ranges of temperatures and crosslinking degrees. Mater Des 2019;183:108130. 链接1

[22] Bejagam KK, Singh S, An Y, Deshmukh SA. Machine-learned coarse-grained models. J Phys Chem Lett 2018;9(16):4667–72. 链接1

[23] Wang W, Gómez-Bombarelli R. Coarse-graining auto-encoders for molecular dynamics. npj Comput Mater 2019;5(1):1–9. 链接1

[24] Himanen L, Geurts A, Foster AS, Rinke P. Data-driven materials science: status, challenges, and perspectives. Adv Sci 2019;6(21):1900808. 链接1

[25] Brinson LC, Deagen M, Chen W, McCusker J, McGuinness DL, Schadler LS, et al. Polymer nanocomposite data: curation, frameworks, access, and potential for discovery and design. ACS Macro Lett 2020;9(8):1086–94. 链接1

[26] Therneau T, Atkinson B, Ripley B. rpart: recursive partitioning and regression trees. Version 4.1-10 [software]. 2019 May 1. Available from: https://rdrr.io/ cran/rpart/. 链接1

[27] Blaiszik B, Chard K, Pruyne J, Ananthakrishnan R, Tuecke S, Foster I. The materials data facility: data services to advance materials science research. JOM 2016;68(8):2045–52. 链接1

[28] Blaiszik B, Ward L, Schwarting M, Gaff J, Chard R, Pike D, et al. A data ecosystem to support machine learning in materials science. MRS Commun 2019;9(4):1125–33. 链接1

[29] Bostanabad R, Zhang Y, Li X, Kearney T, Brinson LC, Apley DW, et al. Computational microstructure characterization and reconstruction: review of the state-of-the-art techniques. Prog Mater Sci 2018;95:1–41. 链接1

[30] Yeong CLY, Torquato S. Reconstructing random media. Phys Rev E 1998;57 (1):495–506. 链接1

[31] Yeong CLY, Torquato S. Reconstructing random media. II. Three-dimensional media from two-dimensional cuts. Phys Rev E 1998;58(1):224–33. 链接1

[32] Xu H, Dikin DA, Burkhart C, Chen W. Descriptor-based methodology for statistical characterization and 3D reconstruction of microstructural materials. Comput Mater Sci 2014;85:206–16. 链接1

[33] Xu H, Li Y, Brinson C, Chen W. A descriptor-based design methodology for developing heterogeneous microstructural materials system. J Mech Des 2014;136(5):051007. 链接1

[34] Snyder VA, Alkemper J, Voorhees PW. The development of spatial correlations during Ostwald ripening: a test of theory. Acta Mater 2000;48(10): 2689–701. 链接1

[35] DeHoff RT. A geometrically general-theory of diffusion controlled coarsening. Acta Metall Mater 1991;39(10):2349–60. 链接1

[36] Li M, Ghosh S, Richmond O, Weiland H, Rouns TN. Three dimensional characterization and modeling of particle reinforced metal matrix composites: part I: quantitative description of microstructural morphology. Mater Sci Eng A 1999;265(1-2):153–73. 链接1

[37] Nan CW, Clarke DR. The influence of particle size and particle fracture on the elastic/plastic deformation of metal matrix composites. Acta Mater 1996;44 (9):3801–11. 链接1

[38] Breneman CM, Brinson LC, Schadler LS, Natarajan B, Krein M, Wu K, et al. Stalking the materials genome: a data-driven approach to the virtual design of nanostructured polymers. Adv Funct Mater 2013;23(46):5746–52. 链接1

[39] Zhang Y, Zhao H, Hassinger I, Brinson LC, Schadler LS, Chen W. Microstructure reconstruction and structural equation modeling for computational design of nanodielectrics. Integr Mater Manuf Innov 2015;4:209–34. 链接1

[40] Karásek L, Sumita M. Characterization of dispersion state of filler and polymer-filler interactions in rubber–carbon black composites. J Mater Sci 1996;31:281–9. 链接1

[41] Yuan M, Turng LS. Microstructure and mechanical properties of microcellular injection molded polyamide-6 nanocomposites. Polymer 2005;46 (18):7273–92. 链接1

[42] Baghgar M, Barnes AM, Pentzer E, Wise AJ, Hammer BAG, Emrick T, et al. Morphology-dependent electronic properties in cross-linked (P3HT-b-P3MT) block copolymer nanostructures. ACS Nano 2014;8(8):8344–9. 链接1

[43] Rollett AD, Lee SB, Campman R, Rohrer GS. Three-dimensional characterization of microstructure by electron back-scatter diffraction. Annu Rev Mater Res 2007;37:627–58. 链接1

[44] Sundararaghavan V, Zabaras N. Classification and reconstruction of threedimensional microstructures using support vector machines. Comput Mater Sci 2005;32(2):223–39. 链接1

[45] Bostanabad R, Bui AT, Xie W, Apley DW, Chen W. Stochastic microstructure characterization and reconstruction via supervised learning. Acta Mater 2016;103:89–102. 链接1

[46] Bostanabad R, Chen W, Apley DW. Characterization and reconstruction of 3D stochastic microstructures via supervised learning. J Microsc 2016;264 (3):282–97. 链接1

[47] Li X, Zhang Y, Zhao H, Burkhart C, Brinson LC, Chen W. A transfer learning approach for microstructure reconstruction and structure–property predictions. Sci Rep 2018;8(1):13461. 链接1

[48] Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. 2014. arXiv:1409.1556.

[49] Cang R, Xu Y, Chen S, Liu Y, Jiao Y, Ren MY. Microstructure representation and reconstruction of heterogeneous materials via deep belief network for computational material design. J Mech Des 2017;139(7):071404. 链接1

[50] Yang Z, Li X, Catherine Brinson L, Choudhary AN, Chen W, Agrawal A. Microstructural materials design via deep adversarial learning methodology. J Mech Des 2018;140(11):111416. 链接1

[51] Yu S, Zhang Y, Wang C, Lee WK, Dong B, Odom TW, et al. Characterization and design of functional quasi-random nanostructured materials using spectral density function. J Mech Des 2017;139(7):071401. 链接1

[52] Uche OU, Stillinger FH, Torquato S. Constraints on collective density variables: two dimensions. Phys Rev E 2004;70(4):046122. 链接1

[53] Uche OU, Torquato S, Stillinger FH. Collective coordinate control of density distributions. Phys Rev E 2006;74(3):031104. 链接1

[54] Batten RD, Stillinger FH, Torquato S. Classical disordered ground states: super-ideal gases and stealth and equi-luminous materials. J Appl Phys 2008;104(3):033504. 链接1

[55] Florescu M, Torquato S, Steinhardt PJ. Designer disordered materials with large, complete photonic band gaps. Proc Natl Acad Sci 2009;106 (49):20658–63. 链接1

[56] Cahn JW. Phase separation by spinodal decomposition in isotropic systems. J Chem Phys 1965;42(1):93–9. 链接1

[57] Teubner M. Level surfaces of Gaussian random fields and microemulsions. EPL 1991;14(5):403–8. 链接1

[58] Chen D, Torquato S. Designing disordered hyperuniform two-phase materials with novel physical properties. Acta Mater 2018;142:152–61. 链接1

[59] Iyer A, Dulal R, Zhang Y, Ghumman UF, Chien T, Balasubramanian G, et al. Designing anisotropic microstructures with spectral density function. Comput Mater Sci 2020;179:109559. 链接1

[60] Chen G, Shen Z, Iyer A, Ghumman UF, Tang S, Bi J, et al. Machine-learningassisted de novo design of organic molecules and polymers: opportunities and challenges. Polymers 2020;12(1):163. 链接1

[61] Johnson NS, Vulimiri PS, To AC, Zhang X, Brice CA, Kappes BB, et al. Invited review: machine learning for materials developments in metals additive manufacturing. Addit Manuf 2020;36:101641. 链接1

[62] Bock FE, Aydin RC, Cyron CJ, Huber N, Kalidindi SR, Klusemann B. A review of the application of machine learning and data mining approaches in continuum materials mechanics. Front Mater 2019;6:110. 链接1

[63] Bostanabad R, Chan YC, Wang LW, Zhu P, Chen W. Globally approximate Gaussian processes for big data with application to data-driven metamaterials design. J Mech Des 2019;141(11):111402. 链接1

[64] Guyon I, Elisseeff A. An introduction to variable and feature selection. J Mach Learn Res 2003;3:1157–82. 链接1

[65] Xu H, Liu R, Choudhary A, Chen W. A machine learning-based design representation method for designing heterogeneous microstructures. J Mech Des 2015;137(5):051403. 链接1

[66] Robnik-Šikonja M, Kononenko I. An adaptation of Relief for attribute estimation in regression. In: Proceedings of the Fourteenth International Conference on Machine Learning; 1997 Jul 8–12; Nashville, TN, USA. San Francisco: Morgan Kaufmann Publishers, Inc.; 1997. p. 296–304.

[67] Fabrigar LR, Wegener DT, MacCallum RC, Strahan EJ. Evaluating the use of exploratory factor analysis in psychological research. Psychol Methods 1999;4(3):272–99. 链接1

[68] Roweis ST, Saul LK. Nonlinear dimensionality reduction by locally linear embedding. Science 2000;290(5500):2323–6. 链接1

[69] Tenenbaum JB, de Silva V, Langford JC. A global geometric framework for nonlinear dimensionality reduction. Science 2000;290(5500):2319–23. 链接1

[70] Jolliffe IT. Principal component analysis. In: Everitt BS, Howell D, editors. Encyclopedia of statistics in behavioral science. Hoboken: John Wiley & Sons, Inc.; 2005. 链接1

[71] Yabansu YC, Steinmetz P, Hötzer J, Kalidindi SR, Nestler B. Extraction of reduced-order process-structure linkages from phase-field simulations. Acta Mater 2017;124:182–94. 链接1

[72] Popova E, Rodgers TM, Gong X, Cecen A, Madison JD, Kalidindi SR. Processstructure linkages using a data science approach: application to simulated additive manufacturing data. Integr Mater Manuf Innov 2017;6(1):54–68. 链接1

[73] Paulson NH, Priddy MW, McDowell DL, Kalidindi SR. Reduced-order structure–property linkages for polycrystalline microstructures based on 2- point statistics. Acta Mater 2017;129:428–38. 链接1

[74] Belkin M, Niyogi P. Laplacian eigenmaps and spectral techniques for embedding and clustering. In: Dietterich T, Becker S, Ghahramani Z, editors. Advances in neural information processing systems. Cambridge: MIT Press; 2001. p. 585–91. 链接1

[75] Donoho DL, Grimes C. Hessian eigenmaps: locally linear embedding techniques for high-dimensional data. Proc Natl Acad Sci 2003;100 (10):5591–6. 链接1

[76] Saxena A, Gupta A, Mukerjee A. Non-linear dimensionality reduction by locally linear isomaps. In: Proceedings of the 11th international conference on neural information processing; 2004 Nov 22–25; Calcutta, India. Berlin: Springer, p. 1038–43.

[77] Breiman L, Friedman J, Stone CJ, Olshen RA. Classification and regression trees. London: Taylor & Francis Group; 1984. 链接1

[78] Cover T, Hart P. Nearest neighbor pattern classification. IEEE Trans Inf Theory 1967;13(1):21–7. 链接1

[79] Cortes C, Vapnik V. Support-vector networks. Mach Learn 1995;20 (3):273–97. 链接1

[80] Boser BE, Guyon IM, Vapnik VN. A training algorithm for optimal margin classifiers. In: Proceedings of the fifth annual workshop on Computational learning theory; 1992 Jul 27–29; Pittsburgh, PA, USA; 1992; p. 144–152.

[81] Breiman L. Random forests. Mach Learn 2001;45(1):5–32. 链接1

[82] Xie T, Grossman JC. Crystal graph convolutional neural networks for an accurate and interpretable prediction of material properties. Phys Rev Lett 2018;120(14):145301. 链接1

[83] Park CW, Wolverton C. Developing an improved crystal graph convolutional neural network framework for accelerated materials discovery. Phys Rev Mater 2020;4(6):063801. 链接1

[84] Weininger D. SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules. J Chem Inf Comput Sci 1988;28(1):31–6. 链接1

[85] Gómez-Bombarelli R, Wei JN, Duvenaud D, Hernández-Lobato JM, SánchezLengeling B, Sheberla D, et al. Automatic chemical design using a data-driven continuous representation of molecules. ACS Cent Sci 2018;4(2):268–76. 链接1

[86] Popova M, Isayev O, Tropsha A. Deep reinforcement learning for de novo drug design. Sci Adv 2018;4(7):aap7885. 链接1

[87] Tao S, Shintani K, Bostanabad R, Chan YC, Yang G, Meingast H, et al. Enhanced Gaussian process metamodeling and collaborative optimization for vehicle suspension design optimization. In: Proceedings of the ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference; 2017 Aug 6–9; Cleveland, OH, USA; 2017.

[88] Bostanabad R, Kearney T, Tao S, Apley DW, Chen W. Leveraging the nugget parameter for efficient Gaussian process modeling. Int J Numer Methods Eng 2018;114(5):501–16. 链接1

[89] Zhang Y, Tao S, Chen W, Apley DW. A latent variable approach to Gaussian process modeling with qualitative and quantitative factors. Technometrics 2020;62(3):291–302. 链接1

[90] Zhang Y, Apley DW, Chen W. Bayesian optimization for materials design with mixed quantitative and qualitative variables. Sci Rep 2020;10(1):4924. 链接1

[91] Iyer A, Zhang Y, Prasad A, Tao S, Wang Y, Schadler L, et al. Data centric mixed variable Bayesian optimization for materials design. In: Proceedings of the ASME International Design Engineering Technical Conference; 2019 Aug 18– 21; Anaheim, CA, USA; 2019.

[92] Balachandran PV, Xue D, Theiler J, Hogden J, Lookman T. Adaptive strategies for materials design using uncertainties. Sci Rep 2016;6(1):19660. 链接1

[93] Li C, de Celis Leal DR, Rana S, Gupta S, Sutti A, Greenhill S, et al. Rapid Bayesian optimisation for synthesis of short polymer fiber materials. Sci Rep 2017;7(1):5683. 链接1

[94] Yamashita T, Sato N, Kino H, Miyake T, Tsuda K, Oguchi T. Crystal structure prediction accelerated by Bayesian optimization. Phys Rev Mater 2018;2 (1):013803. 链接1

[95] Lookman T, Balachandran PV, Xue D, Yuan R. Active learning in materials science with emphasis on adaptive sampling using uncertainties for targeted design. npj Comput Mater 2019;5(1):21. 链接1

[96] Mockus J, Tiesis V, Zilinskas A. The application of Bayesian methods for seeking the extremum. In: Dixon LCW, Szego GP, editors. Towards global optimization. Amsterdam: Elsevier; 1978. p. 117–29. 链接1

[97] Kushner HJ. A new method of locating the maximum point of an arbitrary multipeak curve in the presence of noise. J Basic Eng 1964;86(1):97–106. 链接1

[98] Wang Y, Zhang Y, Zhao H, Li X, Huang Y, Schadler LS, et al. Identifying interphase properties in polymer nanocomposites using adaptive optimization. Compos Sci Technol 2018;162:146–55. 链接1

[99] Zhang Y, Notz WI. Computer experiments with qualitative and quantitative variables: a review and reexamination. Qual Eng 2015;27(1):2–13. 链接1

[100] McMillan NJ, Sacks J, Welch WJ, Gao F. Analysis of protein activity data by Gaussian stochastic process models. J Biopharm Stat 1999;9(1):145–60. 链接1

[101] Wang Y, Iyer A, Chen W, Rondinelli JM. Featureless adaptive optimization accelerates functional electronic materials design. Appl Phys Rev 2020;7:041403. 链接1

相关研究