期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2022年 第15卷 第8期 doi: 10.1016/j.eng.2021.08.031

考虑用户出行需求和信息系统可靠性的电动汽车响应能力评估

School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China

收稿日期: 2021-04-16 修回日期: 2021-08-08 录用日期: 2021-08-11 发布日期: 2021-08-31

下一篇 上一篇

摘要

随着电动汽车(EV)渗透率的提高,电动汽车的需求响应能力对促进电力系统的优化和安全运行具有重要意义。本文提出了一种电动汽车响应能力评估方法,该方法考虑了电动汽车用户的出行需求和集成在电网和交通网中的信息系统的可靠性。首次提出了新的信息-电力-交通耦合系统架构,并提出了信息系统可靠性模型。进一步,提出了考虑交通诱导信息生成和发布可靠性的电动汽车入网状态计算方法。最后,基于所提出的反映用户出行需求的电动汽车充电需求松弛度指标,实现了对电动汽车响应能力的评估。在由RBTS BUS6 和北京交通网络构建的信息-电力-交通系统上进行的大量测试验证了所提方法的有效性,分析了信息可靠性对电动汽车出行和响应能力的影响。

图片

图1

图2

图3

图4

图5

图6

图7

图8

图9

图10

图11

图12

图13

图14

图15

参考文献

[ 1 ] International Energy Agency. Global EV outlook 2019 [Internet]. Paris: International Energy Agency; 2019 May [cited 2021 Apr 15]. Available from: https://www.iea.org/reports/global-ev-outlook-2019. 链接1

[ 2 ] Godina R, Rodrigues EMG, Matias JCO, Catalāo JPS. Smart electric vehicle charging scheduler for overloading prevention of an industry client power distribution transformer. Appl Energy 2016;178:29‒42. 链接1

[ 3 ] Willett K, Steven EL. Electric vehicles as a new power source for electric utilities. Transp Res D Transp Environ 1997;2(3):157‒75. 链接1

[ 4 ] Han S, Han S, Sezaki K. Development of an optimal vehicle-to-grid aggregator for frequency regulation. IEEE Trans Smart Grid 2010;1(1):65‒72. 链接1

[ 5 ] Zhong W, Xie K, Liu Y, Yang C, Xie S. Topology-aware vehicle-to-grid energy trading for active distribution systems. IEEE Trans Smart Grid 2019;‍10(2):2137‒47. 链接1

[ 6 ] Li Y, Hu B. A consortium blockchain-enabled secure and privacy-preserving optimized charging and discharging trading scheme for electric vehicles. IEEE Trans Industr Inform 2021;17(3):1968‒77. 链接1

[ 7 ] Singh J, Tiwari R. Cost benefit analysis for V2G implementation of electric vehicles in distribution system. IEEE Trans Ind Appl 2020;56(5):5963‒73. 链接1

[ 8 ] Lu X, Chan KW, Xia S, Shahidehpour M, Ng WH. An operation model for distribution companies using the flexibility of electric vehicle aggregators. IEEE Trans Smart Grid 2021;12(2):1507‒18. 链接1

[ 9 ] Zhang X, Chan KW, Wang H, Zhou B, Wang G, Qiu J. Multiple group search optimization based on decomposition for multi-objective dispatch with electric vehicle and wind power uncertainties. Appl Energy 2020;262:114507. 链接1

[10] Zhang H, Hu Z, Xu Z, Song Y. Evaluation of achievable vehicle-to-grid capacity using aggregate PEV model. IEEE Trans Power Syst 2017;‍32(1):784‒94. 链接1

[11] Mehta R, Verma P, Srinivasan D, Yang J. Double-layered intelligent energy management for optimal integration of plug-in electric vehicles into distribution systems. Appl Energy 2019;233:146‒55. 链接1

[12] Zhao J, Wan C, Xu Z, Wong KP. Spinning reserve requirement optimization considering integration of plug-in electric vehicles. IEEE Trans Smart Grid 2017;8(4):2009‒21. 链接1

[13] Pavic´ I, Capuder T, Kuzle I. Value of flexible electric vehicles in providing spinning reserve services. Appl Energy 2015;157:60‒74. 链接1

[14] Wang Q, Zhang C, Ding Y, Xydis G, Wang J, Østergaard J. Review of real-time electricity markets for integrating distributed energy resources and demand response. Appl Energy 2015;138:695‒706. 链接1

[15] Sharma A, Srinivasan D, Trivedi A. A decentralized multi-agent approach for service restoration in uncertain environment. IEEE Trans Smart Grid 2018;9(4):3394‒405. 链接1

[16] Hou K, Xu X, Jia H, Yu X, Jiang T, Zhang K, et al. A reliability assessment approach for integrated transportation and electrical power systems incorporating electric vehicles. IEEE Trans Smart Grid 2018;9(1):88‒100. 链接1

[17] Sharma A, Srinivasan D, Trivedi A. A decentralized multiagent system approach for service restoration using DG islanding. IEEE Trans Smart Grid 2015;6(6):2784‒93. 链接1

[18] Ma Y, Houghton T, Cruden A, Infield D. Modeling the benefits of vehicle-to-grid technology to a power system. IEEE Trans Power Syst 2012;‍27(2):1012‒20. 链接1

[19] Das R, Wang Y, Putrus G, Kotter R, Marzband M, Herteleer B, et al. Multi-objective techno-economic-environmental optimisation of electric vehicle for energy services. Appl Energy 2020;257:113965. 链接1

[20] Li Z, Zhao S, Liu Y. Control strategy and application of distributed electric vehicle energy storage. Power Syst Technol 2016;40(2):442‒50. Chinese.

[21] Yang X, Ren S, Zhang Y, Zhao B, Huang F, Xie L. Schedulable ability model and priority-based intraday scheduling strategy for electric vehicle. Autom Electr Power Syst 2017;41(2):84‒93. Chinese. 链接1

[22] Rautiainen A, Repo S, Jarventausta P, Mutanen A, Vuorilehto K, Jalkanen K. Statistical charging load modeling of PHEVs in electricity distribution networks using national travel survey data. IEEE Trans Smart Grid 2012;3(4):1650‒9. 链接1

[23] Arias MB, Kim M, Bae S. Prediction of electric vehicle charging-power demand in realistic urban traffic networks. Appl Energy 2017;195:738‒53. 链接1

[24] Tao S, Liao K, Xiao X, Wen J, Yang Y, Zhang J. Charging demand for electric vehicle based on stochastic analysis of trip chain. IET Gener Transm Distrib 2016;10(11):2689‒98. 链接1

[25] Tang D, Wang P. Probabilistic modeling of nodal charging demand based on spatial-temporal dynamics of moving electric vehicles. IEEE Trans Smart Grid 2016;7(2):627‒36. 链接1

[26] Steen D, Tuan LA, Carlson O, Bertling L. Assessment of electric vehicle charging scenarios based on demographical data. IEEE Trans Smart Grid 2012;3(3):1457‒68. 链接1

[27] Bae S, Kwasinski A. Spatial and temporal model of electric vehicle charging demand. IEEE Trans Smart Grid 2012;3(1):394‒403. 链接1

[28] Galus MD, Waraich RA, Noembrini F, Steurs K, Georges G, Boulouchos K, et al. Integrating power systems, transport systems and vehicle technology for electric mobility impact assessment and efficient control. IEEE Trans Smart Grid 2012;3(2):934‒49. 链接1

[29] Bessani M, Fanucchi RZ, Delbem ACC, Maciel CD. Impact of operators’ performance in the reliability of cyber‍‒‍physical power distribution systems. IET Gener Transm Distrib 2016;10(11):2640‒6. 链接1

[30] Wu G, Wang G, Sun J, Chen J. Optimal partial feedback attacks in cyber‒physical power systems. IEEE Trans Automat Contr 2020;65(9):3919‒26. 链接1

[31] Jahromi AA, Kemmeugne A, Kundur D, Haddadi A. Cyber‍‒‍physical attacks targeting communication-assisted protection schemes. IEEE Trans Power Syst 2020;35(1):440‒50. 链接1

[32] Li Y, Wang Y, Hu S. Online generative adversary network based measurement recovery in false data injection attacks: a cyber‒physical approach. IEEE Trans Industr Inform 2020;16(3):2031‒43. 链接1

[33] Liu Y, Lu D, Deng L, Bai T, Hou K, Zeng Y. Risk assessment for the cascading failure of electric cyber‍‒‍physical system considering multiple information factors. IET Cyber-Phys Syst Theory Appl 2017;2(4):155‒60. 链接1

[34] Sun X, Liu Y, Deng L. Reliability assessment of cyber‍‒‍physical distribution network based on the fault tree. Renew Energy 2020;155:1411‒24. 链接1

[35] Xin S, Guo Q, Sun H, Zhang B, Wang J, Chen C. Cyber‒physical modeling and cyber-contingency assessment of hierarchical control systems. IEEE Trans Smart Grid 2015;6(5):2375‒85. 链接1

[36] Falahati B, Fu Y. Reliability assessment of smart grids considering indirect cyber‒power interdependencies. IEEE Trans Smart Grid 2014;5(4):1677‒85. 链接1

[37] Xu L, Guo Q, Yang T, Sun H. Robust routing optimization for smart grids considering cyber‍‒‍physical interdependence. IEEE Trans Smart Grid 2019;10(5):5620‒9. 链接1

[38] Adefarati T, Bansal RC. Reliability, economic and environmental analysis of a microgrid system in the presence of renewable energy resources. Appl Energy 2019;236:1089‒114. 链接1

[39] Liu W, Gong Q, Han H, Wang Z, Wang L. Reliability modeling and evaluation of active cyber physical distribution system. IEEE Trans Power Syst 2018;33(6):7096‒108. 链接1

[40] Cheng L, Chang Y, Lin J, Singh C. Power system reliability assessment with electric vehicle integration using battery exchange mode. IEEE Trans Sustain Energy 2013;4(4):1034‒42. 链接1

[41] Wang X, Karki R. Exploiting PHEV to augment power system reliability. IEEE Trans Smart Grid 2017;8(5):2100‒8. 链接1

[42] Li W. Study on urban rail transit intelligent and integrated dispatch manage system [dissertation]. Beijing: Beijing Jiaotong University; 2006. Chinese.

[43] Wan Y, Cao J, Zhang S, Tu G, Lu C, Xu X, et al. An integrated cyber‒physical simulation environment for smart grid applications. Tsinghua Sci Technol 2014;19(2):133‒43. 链接1

[44] Gao G. Critical technologies and implementation program of common information platform based on ATMS [dissertation]. Changchun: Jilin University; 2005. Chinese. 链接1

[45] Bowman JL, Ben-Akiva ME. Activity-based disaggregate travel demand model system with activity schedules. Transp Res Part A Policy Pract 2001;35(1):1‒28. 链接1

[46] Nie Y, Wang X, Cheng KWE. Multi-area self-adaptive pricing control in smart city with EV user participation. IEEE Trans Intell Transp Syst 2018;‍19(7):2156‒64. 链接1

[47] Santos A, McGuckin N, Nakamoto HY, Gray D, Liss S. Summary of travel trends: 2009 national household travel survey. Washington, DC: US Department of Transportation, Federal Highway Administration; 2011.

[48] Billinton R, Jonnavithula S. A test system for teaching overall power system reliability assessment. IEEE Trans Power Syst 1996;11(4):1670‒6. 链接1

[49] Deng L, Liu Y, Yu Y, Bai T. Reliability assessment of distribution network CPS considering whole fault processing. Electr Power Autom Equip 2017;37(12):22‒9. Chinese.

[50] Beijing Municipal Commission of Transport. Real-time traffic condition [Internet]. Beijing: Beijing Municipal Commission of Transport; 2019 [cited 2021 Apr 15]. Available from: http://jtw.beijing.gov.cn/. 链接1

[51] Weather Post website. Historical weather of Beijing [Internet]. Anhui: Weather Post website; 2019 [cited 2021 Apr 15]. Available from: http://www.tianqihoubao.com/lishi/beijing.html. Chinese. 链接1

相关研究