期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2023年 第24卷 第5期 doi: 10.1016/j.eng.2021.08.032

钠离子电池工程化——机遇与挑战

a School of Materials Science and Engineering, Peking University, Beijing 100871, China
b Beijing Innovation Center for Engineering Science and Advanced Technology (BIC-ESAT), Beijing 100871, China
c Beijing Key Laboratory for Magnetoelectric Materials and Devices (BKL-MMD), Beijing 100871, China

收稿日期: 2021-05-16 修回日期: 2021-08-14 录用日期: 2021-08-19 发布日期: 2022-05-26

下一篇 上一篇

摘要

当前,在应对全球能源枯竭与环境恶化之际,可持续且环境友好的可再生能源正迎来重要的发展机遇。以二次电池为代表的电能存储(EES)技术,可实现绿色新能源安全且经济有效的存储和转化,被视为可平抑可再生能源间歇性并实现稳定并网输入的最佳解决方案。钠离子电池(SIB),受益于钠资源的丰富
性及低成本,是下一代大规模电化学存储系统最具应用前景的选择之一。本文详细讨论了锂离子电池(LIB)和钠离子电池在不同应用场景下的主要区别,并描述了当前对钠离子电池的理解。通过比较锂离子电池、铅酸电池(LAB)和钠离子电池之间的技术发展情况,进一步揭示钠离子电池的优势。本文以基于钠离子电池技术所取得的商业化成就为文章亮点,重点介绍了五家钠离子电池企业和相应的钠离子电池产品,以及各自的钠离子电池化学与技术。最后,讨论了下一代钠离子电池商业化的前景与挑战。

图片

图1

图2

图3

图4

图5

图6

图7

图8

图9

参考文献

[ 1 ] Arunachalam VS, Fleischer EL. The global energy landscape and materials innovation. MRS Bull 2008;33(4):264‒88. 链接1

[ 2 ] Dunn B, Kamath H, Tarascon JM. Electrical energy storage for the grid: a battery of choices. Science 2011;334(6058):928‒35. 链接1

[ 3 ] Tarascon JM. Is lithium the new gold? Nat Chem 2010;2(6):510. 链接1

[ 4 ] Ginley D, Green MA, Collins R. Solar energy conversion toward 1 terawatt. MRS Bull 2008;33(4):355‒64. 链接1

[ 5 ] Holdren JP. Energy and sustainability. Science 2007;315(5813):737. 链接1

[ 6 ] Yang Z, Zhang J, Kintner-Meyer MCW, Lu X, Choi D, Lemmon JP, et al. Electrochemical energy storage for green grid. Chem Rev 2011;111(5):3577‒613. 链接1

[ 7 ] Kundu D, Talaie E, Duffort V, Nazar LF. The emerging chemistry of sodium ion batteries for electrochemical energy storage. Angew Chem Int Ed Engl 2015;54(11):3431‒48. 链接1

[ 8 ] Larcher D, Tarascon JM. Towards greener and more sustainable batteries for electrical energy storage. Nat Chem 2015;7(1):19‒29. 链接1

[ 9 ] Goodenough JB. Energy storage materials: a perspective. Energy Storage Mater 2015;1:158‒61. 链接1

[10] Chen R, Luo R, Huang Y, Wu F, Li L. Advanced high energy density secondary batteries with multi-electron reaction materials. Adv Sci 2016;3(10):1600051. 链接1

[11] Armand M, Tarascon JM. Building better batteries. Nature 2008;451(7179):652‒7. 链接1

[12] Tarascon JM, Armand M. Issues and challenges facing rechargeable lithium batteries. Nature 2001;414(6861):359‒67. 链接1

[13] Grosjean C, Miranda PH, Perrin M, Poggi P. Assessment of world lithium resources and consequences of their geographic distribution on the expected development of the electric vehicle industry. Renew Sustain Energy Rev 2012;16(3):1735‒44. 链接1

[14] Wadia C, Albertus P, Srinivasan V. Resource constraints on the battery energy storage potential for grid and transportation applications. J Power Sources 2011;196(3):1593‒8. 链接1

[15] Chen H, Cong TN, Yang W, Tan C, Li Y, Ding Y. Progress in electrical energy storage system: a critical review. Prog Nat Sci 2009;19(3):291‒312. 链接1

[16] Bones RJ, Teagle DA, Brooker SD, Cullen FL. Development of a Ni, NiCl2 positive electrode for a liquid sodium (ZEBRA) battery cell. J Electrochem Soc 1989;136(5):1274‒7. 链接1

[17] Oshima T, Kajita M, Okuno A. Development of sodium‒sulfur batteries. Int J Appl Ceram Technol 2004;1(3):269‒76. 链接1

[18] Dustmann CH. Advances in ZEBRA batteries. J Power Sources 2004;127(1‒2):85‒92.

[19] Yabuuchi N, Kubota K, Dahbi M, Komaba S. Research development on sodium-ion batteries. Chem Rev 2014;114(23):11636‒82. 链接1

[20] Ali Z, Zhang T, Asif M, Zhao L, Yu Y, Hou Y. Transition metal chalcogenide anodes for sodium storage. Mater Today 2020;35:131‒67. 链接1

[21] Wu F, Zhao C, Chen S, Lu Y, Hou Y, Hu YS, et al. Multi-electron reaction materials for sodium-based batteries. Mater Today 2018;21(9):960‒73. 链接1

[22] Tarascon JM, Hull GW. Sodium intercalation into the layer oxides NaxMo2O4. Solid State Ion 1986;22(1):85‒96. 链接1

[23] Carmichael RS, editor. Practical handbook of physical properties of rocks and minerals. Boca Raton: CRC Press; 1989.

[24] Kuratani K, Uemura N, Senoh H, Takeshita HT, Kiyobayashi T. Conductivity, viscosity and density of MClO4 (M = Li and Na) dissolved in propylene carbonate and γ-butyrolactone at high concentrations. J Power Sources 2013;223:175‒82. 链接1

[25] Zhao LN, Zhang T, Zhao HL, Hou YL. Polyanion-type electrode materials for advanced sodium-ion batteries. Mater Today Nano 2020;10:100072. 链接1

[26] Zhang T, Zhang L, Zhao L, Huang X, Hou Y. Catalytic effects in the cathode of Li‒S batteries: accelerating polysulfides redox conversion. EnergyChem 2020;2(4):100036. 链接1

[27] Slater MD, Kim D, Lee E, Johnson CS. Sodium-ion batteries. Adv Funct Mater 2013;23(8):947‒58. 链接1

[28] Manthiram A, Choi J. Chemical and structural instabilities of lithium ion battery cathodes. J Power Sources 2006;159(1):249‒53. 链接1

[29] Winter M, Besenhard JO, Spahr ME, Novák P. Insertion electrode materials for rechargeable lithium batteries. Adv Mater 1998;10(10):725‒63. 链接1

[30] Scrosati B. Lithium rocking chair batteries: an old concept. J Electrochem Soc 1992;139(10):2776‒81. 链接1

[31] Li S, Qiu J, Lai C, Ling M, Zhao H, Zhang S. Surface capacitive contributions: towards high rate anode materials for sodium ion batteries. Nano Energy 2015;12:224‒30. 链接1

[32] Ali Z, Asif M, Huang X, Tang T, Hou Y. Hierarchically porous Fe2CoSe4 binary-metal selenide for extraordinary rate performance and durable anode of sodium-ion batteries. Adv Mater 2018;30(36):1802745. 链接1

[33] Xiao L, Cao Y, Henderson WA, Sushko ML, Shao Y, Xiao J, et al. Hard carbon nanoparticles as high-capacity, high-stability anodic materials for Na-ion batteries. Nano Energy 2016;19:279‒88. 链接1

[34] Zhang T, Zhang L, Zhao L, Huang X, Li W, Li T, et al. Free-standing, foldable V2O3/multichannel carbon nanofibers electrode for flexible Li-ion batteries with ultralong lifespan. Small 2020;16(47):2005302. 链接1

[35] Shannon RD. Revised effective ionic-radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr A 1976;32(5):751‒67. 链接1

[36] Chen S, Wu C, Shen L, Zhu C, Huang Y, Xi K, et al. Challenges and perspectives for NASICON-type electrode materials for advanced sodium-ion batteries. Adv Mater 2017;29(48):1700431. 链接1

[37] Okoshi M, Yamada Y, Yamada A, Nakai H. Theoretical analysis on de-solvation of lithium, sodium, and magnesium cations to organic electrolyte solvents. J Electrochem Soc 2013;160(11):A2160‒5. 链接1

[38] Yamada Y, Iriyama Y, Abe T, Ogumi Z. Kinetics of lithium ion transfer at the interface between graphite and liquid electrolytes: effects of solvent and surface film. Langmuir 2009;25(21):12766‒70. 链接1

[39] Yamada Y, Koyama Y, Abe T, Ogumi Z. Correlation between charge‒discharge behavior of graphite and solvation structure of the lithium ion in propylene carbonate-containing electrolytes. J Phys Chem C 2009;113(20):8948‒53. 链接1

[40] Lide DR, editor. CRC handbook of chemistry and physics. Boca Raton: CRC Press; 2003.

[41] Berg EJ, Villevieille C, Streich D, Trabesinger S, Novák P. Rechargeable batteries: grasping for the limits of chemistry. J Electrochem Soc 2015;162(14):A2468‒75. 链接1

[42] Peters JF, Cruz AP, Weil M. Exploring the economic potential of sodium-ion batteries. Batteries 2019;5(1):10. 链接1

[43] Liu T, Dai A, Lu J, Yuan Y, Xiao Y, Yu L, et al. Correlation between manganese dissolution and dynamic phase stability in spinel-based lithium-ion battery. Nat Commun 2019;10(1):4721. 链接1

[44] Huang Q, Song J, Gao Y, Wang D, Liu S, Peng S, et al. Supremely elastic gel polymer electrolyte enables a reliable electrode structure for silicon-based anodes. Nat Commun 2019;10(1):5586. 链接1

[45] Niu YB, Guo YJ, Yin YX, Zhang SY, Wang T, Wang P, et al. High-efficiency cathode sodium compensation for sodium-ion batteries. Adv Mater 2020;32(33):2001419. 链接1

[46] Zhao L, Zhao H, Du Z, Wang J, Long X, Li Z, et al. Delicate lattice modulation enables superior Na storage performance of Na3V2(PO4)3 as both an anode and cathode material for sodium-ion batteries: understanding the role of calcium substitution for vanadium. J Mater Chem A 2019;7(16):9807‒14. 链接1

[47] Ni Q, Bai Y, Wu F, Wu C. Polyanion-type electrode materials for sodium-ion batteries. Adv Sci 2017;4(3):1600275. 链接1

[48] Barpanda P, Nishimura SI, Yamada A. High-voltage pyrophosphate cathodes. Adv Energy Mater 2012;2(7):841‒59. 链接1

[49] Bauer A, Song J, Vail S, Pan W, Barker J, Lu Y. The scale-up and commercialization of nonaqueous Na-ion battery technologies. Adv Energy Mater 2018;8(17):1702869. 链接1

[50] Zhao C, Wang Q, Yao Z, Wang J, Sánchez-Lengeling B, Ding F, et al. Rational design of layered oxide materials for sodium-ion batteries. Science 2020;370(6517):708‒11. 链接1

[51] Rong X, Liu J, Hu E, Liu Y, Wang Y, Wu J, et al. Structure-induced reversible anionic redox activity in Na layered oxide cathode. Joule 2018;2(1):125‒40. 链接1

[52] Zhao L, Zhao H, Long X, Li Z, Du Z. Superior high-rate and ultralong-lifespan Na3V2(PO4)3@C cathode by enhancing the conductivity both in bulk and on surface. ACS Appl Mater Interfaces 2018;10(42):35963‒71. 链接1

[53] Zhao L, Zhao H, Wang J, Zhang Y, Li Z, Du Z, et al. Micro/nano Na3V2(PO4)3/N-doped carbon composites with a hierarchical porous structure for high-rate pouch-type sodium-ion full-cell performance. ACS Appl Mater Interfaces 2021;13(7):8445‒54. 链接1

[54] Xu C, Zhao J, Wang E, Liu X, Shen X, Rong X, et al. A novel NASICON-typed Na4VMn0.5Fe0.5(PO4)3 cathode for high-performance Na-ion batteries. Adv Energy Mater 2021;11(22):2100729. 链接1

[55] Zhao L, Zhao H, Du Z, Chen N, Chang X, Zhang Z, et al. Computational and experimental understanding of Al-doped Na3V2-xAlx(PO4)3 cathode material for sodium ion batteries: electronic structure, ion dynamics and electrochemical properties. Electrochim Acta 2018;282:510‒9. 链接1

[56] Qi Y, Tong Z, Zhao J, Ma L, Wu T, Liu H, et al. Scalable room-temperature synthesis of multi-shelled Na3(VOPO4)2F microsphere cathodes. Joule 2018;2(11):2348‒63. 链接1

[57] Shen X, Zhou Q, Han M, Qi X, Li B, Zhang Q, et al. Rapid mechanochemical synthesis of polyanionic cathode with improved electrochemical performance for Na-ion batteries. Nat Commun 2021;12(1):2848. 链接1

[58] Wu Z, Xie J, Xu Z, Zhang S, Zhang Q. Recent progress in metal‒organic polymers as promising electrodes for lithium/sodium rechargeable batteries. J Mater Chem A 2019;7(9):4259‒90. 链接1

[59] Wen Y, He K, Zhu Y, Han F, Xu Y, Matsuda I, et al. Expanded graphite as superior anode for sodium-ion batteries. Nat Commun 2014;5(1):4033. 链接1

[60] Zhang Y, Qin J, Lowe SE, Li W, Zhu Y, Al-Mamun M, et al. Enhanced electrochemical production and facile modification of graphite oxide for cost-effective sodium ion battery anodes. Carbon 2021;177:71‒8. 链接1

[61] Long B, Qiao Z, Zhang J, Zhang S, Balogun MS, Lu J, et al. Polypyrrole-encapsulated amorphous Bi2S3 hollow sphere for long life sodium ion batteries and lithium‒sulfur batteries. J Mater Chem A 2019;7(18):11370‒8. 链接1

[62] Zhao L, Rong X, Niu Y, Xu R, Zhang T, Li T, et al. Ostwald ripening tailoring hierarchically porous Na3V2(PO4)2O2F hollow nanospheres for superior high-rate and ultrastable sodium ion storage. Small 2020;16(48):2004925. 链接1

[63] Guo JZ, Wang PF, Wu XL, Zhang XH, Yan Q, Chen H, et al. High-energy/power and low-temperature cathode for sodium-ion batteries: in situ XRD study and superior full-cell performance. Adv Mater 2017;29(33):1701968. 链接1

[64] Kim H, Yoon G, Park I, Park KY, Lee B, Kim J, et al. Anomalous Jahn‒Teller behavior in a manganese-based mixed-phosphate cathode for sodium ion batteries. Energy Environ Sci 2015;8(11):3325‒35. 链接1

[65] Barpanda P, Oyama G, Nishimura SI, Chung SC, Yamada A. A 3.8-V earth-abundant sodium battery electrode. Nat Commun 2014;5(1):4358. 链接1

[66] Górka J, Vix-Guterl C, CM Ghimbeu. Recent progress in design of biomass-derived hard carbons for sodium ion batteries. J Carbon Res 2016;2(4):24. 链接1

[67] Li Y, Hu YS, Titirici MM, Chen L, Huang X. Hard carbon microtubes made from renewable cotton as high-performance anode material for sodium-ion batteries. Adv Energy Mater 2016;6(18):1600659. 链接1

[68] Kamiyama A, Kubota K, Igarashi D, Youn Y, Tateyama Y, Ando H, et al. MgO-template synthesis of extremely high capacity hard carbon for Na-ion battery. Angew Chem Int Ed Engl 2021;60(10):5114‒20. 链接1

[69] Rudola A, Rennie AJR, Heap R, Meysami SS, Lowbridge A, Mazzali F, et al. Commercialisation of high energy density sodium-ion batteries: Faradion’s journey and outlook. J Mater Chem A 2021;9(13):8279‒302. 链接1

[70] Xu SY, Wu XY, Li YM, Hu YS, Chen LQ. Novel copper redox-based cathode materials for room-temperature sodium-ion batteries. Chin Phys B 2014;23(11):118202. 链接1

[71] Li Y, Yang Z, Xu S, Mu L, Gu L, Hu YS, et al. Air-stable copper-based P2-Na7/9Cu2/9Fe1/9Mn2/3O2 as a new positive electrode material for sodium-ion batteries. Adv Sci 2015;2(6):1500031. 链接1

[72] Mu L, Xu S, Li Y, Hu YS, Li H, Chen L, et al. Prototype sodium-ion batteries using an air-stable and Co/Ni-Free O3-layered metal oxide cathode. Adv Mater 2015;27(43):6928‒33. 链接1

[73] Rong X, Lu Y, Qi X, Zhou Q, Kong W, Tang K, et al. Na-ion batteries: from fundamental research to engineering exploration. Energy Storage Sci Technol 2020;9(2):515‒22.

[74] Li Y, Hu YS, Qi X, Rong X, Li H, Huang X, et al. Advanced sodium-ion batteries using superior low cost pyrolyzed anthracite anode: towards practical applications. Energy Storage Mater 2016;5:191‒7. 链接1

[75] Lu Y, Zhao C, Qi X, Qi Y, Li H, Huang X, et al. Pre-oxidation-tuned microstructures of carbon anodes derived from pitch for enhancing Na storage performance. Adv Energy Mater 2018;8(27):1800108. 链接1

[76] Meng QS, Lu YX, Ding FX, Zhang QQ, Chen LQ, Hu YS. Tuning the closed pore structure of hard carbons with the highest Na storage capacity. ACS Energy Lett 2019;4(11):2608‒12. 链接1

[77] Hu YS, Komaba S, Forsyth M, Johnson C, Rojo T. A new emerging technology: Na-ion batteries. Small Methods 2019;3(4):1900184. 链接1

[78] Lee HW, Wang RY, Pasta M, Lee SW, Liu N, Cui Y. Manganese hexacyanomanganate open framework as a high-capacity positive electrode material for sodium-ion batteries. Nat Commun 2014;5(1):5280. 链接1

[79] Pasta M, Wessells CD, Liu N, Nelson J, McDowell MT, Huggins RA, et al. Full open-framework batteries for stationary energy storage. Nat Commun 2014;5(1):3007. 链接1

相关研究