期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2022年 第14卷 第7期 doi: 10.1016/j.eng.2021.10.020

高海拔冻土区路基周边近地表流场特征及其工程意义

a State Key Laboratory of Frozen Ground Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
b University of Chinese Academy of Sciences, Beijing 100049, China
c College of Engineering, University of Alaska Anchorage, Anchorage, AK, 99508, USA
d College of Civil Engineering and Architecture, Jiaxing University, Jiaxing 314001, China
e School of Civil Engineering, Northwest Minzu University, Lanzhou 730024, China

收稿日期: 2021-04-15 00:00:00 修回日期: 2021-10-05 00:00:00 录用日期: 2021-10-17 00:00:00 发布日期: 2022-01-25

下一篇 上一篇

摘要

块碎石、通风管和热管等主动冷却措施广泛应用于冻土区工程建设,通过强化冷季与外界空气的换热过程降低下伏多年冻土的温度,进而确保气候变暖背景下工程构筑物的长期稳定性。对于气冷类主动冷却措施而言,对流换热过程至关重要,因此掌握构筑物周边流场特征具有重要的意义。结合青藏高原北麓河高等级公路试验示范工程,沿垂直于路基走向的横剖面开展了路基周边近地表流场的长期定位观测。基于6 个观测塔完整的一年观测数据,研究了路基两侧60 m范围内地面以上0.5 m、1.5 m、3.0 m和4.5 m高度上风速、风向的空间分布特征及季节变化规律。结果表明,路基的存在对近地表流场有显著的影响,在背风侧的影响距离可达10 倍路基高度。路基周边近地表风速沿高度的分布可用综合幂次律描述,幂次值为0.14~0.4;远离路基位置幂次值年均水平为0.19,与以往研究中常用值存在差异。讨论了近地表风场的空间分布和季节变化对包括块石、通风管等气冷路基结构工作机制和长期效果的影响,认为低估近地表风场速度剖面的幂次值、忽略风向的季节变化可能导致气冷类主动冷却降温措施设计的不足。现场测试结果可为高原冻土区工程建设提供有益参考。

图片

图1

图2

图3

图4

图5

图6

图7

图8

图9

图10

图11

图12

图13

图14

图15

图16

参考文献

[ 1 ] Gruber S. Derivation and analysis of a high-resolution estimate of global permafrost zonation. Cryosphere 2012;6(1):221‒33. 链接1

[ 2 ] Hossain K. Arctic melting: a new economic frontier and global geopolitics. Curr Dev Arct Law 2017;5:40‒5. 链接1

[ 3 ] Chong ZR, Yang SHB, Babu P, Linga P, Li XS. Review of natural gas hydrates as an energy resource: prospects and challenges. Appl Energy 2016;‍162:1633‒52. 链接1

[ 4 ] Nelson FE, Anisimov OA, Shiklomanov NI. Climate change and hazard zonation in the circum-arctic permafrost regions. Nat Hazards 2002;‍26(3):203‒25. 链接1

[ 5 ] Instanes A, Anisimov O, Brigham L, Goering D, Khrustalev LN, Ladanyi B, et al. Infrastructure: buildings, support systems, and industrial facilities. In: Arctic climate impact assessment. New York: Cambridge University Press; 2005. p.907‒44. 链接1

[ 6 ] Larsen P, Goldsmith S, Smith O, Wilson M, Strzepek K, Chinowsky P, et al. Estimating future costs for Alaska public infrastructure at risk from climate change. Glob Environ Change 2008;18(3):442‒57. 链接1

[ 7 ] Wu QB, Niu FJ. Permafrost changes and engineering stability in Qinghai‍‒Xizang Plateau. Chin Sci Bull 2013;58(10):1079‒94. 链接1

[ 8 ] Ma W, Niu FJ, Mu YH. Basic research on the major permafrost projects in the Qinghai-Tibet plateau. Adv Earth Sci 2012; 11(27): 1185‒1191. Chinese.

[ 9 ] Streletskiy DA, Suter LJ, Shiklomanov NI, Porfiriev BN, Eliseev DO. Assessment of climate change impacts on buildings, structures and infrastructure in the Russian regions on permafrost. Environ Res Lett 2019;14(2):025003. 链接1

[10] Suter L, Streletskiy D, Shiklomanov N. Assessment of the cost of climate change impacts on critical infrastructure in the circumpolar Arctic. Polar Geogr 2019;42(4):267‒86. 链接1

[11] Hjort J, Karjalainen O, Aalto J, Westermann S, Romanovsky VE, Nelson FE, et al. Degrading permafrost puts Arctic infrastructure at risk by mid-century. Nat Commun 2018;9(1):5147. 链接1

[12] Andersland OB, Ladanyi B. Frozen ground engineering. 2nd ed. New York City: John Wiley & Sons, Inc.; 2003.

[13] Ma W, Cheng GD, Wu QB. Construction on permafrost foundations: lessons learned from the Qinghai‒Tibet Railroad. Cold Reg Sci Technol 2009;‍59(1):3‒11. 链接1

[14] Bommer C, Phillips M, Arenson LU. Practical recommendations for planning, constructing and maintaining infrastructure in mountain permafrost. Permafr Periglac Process 2010;21(1):97‒104. 链接1

[15] Goering DJ, Kumar P. Winter-time convection in open-graded embankments. Cold Reg Sci Technol 1996;24(1):57‒74. 链接1

[16] Cheng GD, Lai YM, Sun ZZ, Jiang F. The ‘thermal semi-conductor’ effect of crushed rocks. Permafr Periglac Process 2007;18(2):151‒60. 链接1

[17] Niu FJ, Cheng GD, Xia HM, Ma LF. Field experiment study on effects of duct-ventilated railway embankment on protecting the underlying permafrost. Cold Reg Sci Technol 2006;45(3):178‒92. 链接1

[18] Chataigner Y, Gosselin L, Doré G. Optimization of embedded inclined open-ended channel in natural convection used as heat drain. Int J Therm Sci 2009;48(6):1151‒60. 链接1

[19] Jafari D, Franco A, Filippeschi S, Di Marco P. Two-phase closed thermosyphons: a review of studies and solar applications. Renew Sustain Energy Rev 2016;53:575‒93. 链接1

[20] Wu J, Ma W, Sun Z, Wen Z. In-situ study on cooling effect of the two-phase closed thermosyphon and insulation combinational embankment of the Qinghai‒Tibet Railway. Cold Reg Sci Technol 2010;60(3):234‒44. 链接1

[21] Chotivisarut N, Nuntaphan A, Kiatsiriroat T. Seasonal cooling load reduction of building by thermosyphon heat pipe radiator in different climate areas. Renew Energy 2012;38(1):188‒94. 链接1

[22] Mu Y, Li G, Yu Q, Ma W, Wang D, Wang F. Numerical study of long-term cooling effects of thermosyphons around tower footings in permafrost regions along the Qinghai‒Tibet Power Transmission Line. Cold Reg Sci Technol 2016;121:237‒49. 链接1

[23] Ersöz MA. Effects of different working fluid use on the energy and exergy performance for evacuated tube solar collector with thermosyphon heat pipe. Renew Energy 2016;96:244‒56. 链接1

[24] Yan C, Shi W, Li X, Wang S. A seasonal cold storage system based on separate type heat pipe for sustainable building cooling. Renew Energy 2016;85:880‒9. 链接1

[25] Pei WS, Zhang MY, Lai YM, Yan ZR, Li SY. Evaluation of the ground heat control capacity of a novel air-L-shaped TPCT-ground (ALTG) cooling system in cold regions. Energy 2019;179(15):655‒68. 链接1

[26] Junior AAM, Mantelli MBH. Thermal performance of a novel flat thermosyphon for avionics thermal management. Energy Convers Manag 2019;202:112219. 链接1

[27] Li X, Li J, Zhou G, Lv L. Quantitative analysis of passive seasonal cold storage with a two-phase closed thermosyphon. Appl Energy 2020;260:114250. 链接1

[28] Esch DC. Road and airfield design for permafrost conditions. In: Vinson TS, Rooney JW, Haas WH, editors. Roads and airfields in cold regions: a state of the practice report. New York City: American Society of Civil Engineers; 1996. p.121‒49.

[29] Doré G, Niu F, Brooks H. Adaptation methods for transportation infrastructure built on degrading permafrost. Permafr Periglac Process 2016;27(4):352‒64. 链接1

[30] Mu YH, Li GY, Ma W, Song ZM, Zhou ZW, Wang F. Rapid permafrost thaw induced by heat loss from a buried warm-oil pipeline and a new mitigation measure combining seasonal air-cooled embankment and pipe insulation. Energy 2020;203:117919. 链接1

[31] Zhang MY, Lai YM, Yu WB, Zhang JM. Contrast experimental study on cooling effect and mechanism between closed and open riprapped-embankment. Chin J Rock Mech Eng 2005; 24(15): 2671‒7. Chinese. 链接1

[32] Zhang M, Lai Y, Li S, Zhang S. Laboratory investigation on cooling effect of sloped crushed-rock revetment in permafrost regions. Cold Reg Sci Technol 2006;46(1):27‒35. 链接1

[33] Wu QB, Cheng HB, Jiang GL, Ma W, Liu YZ. Cooling mechanism of embankment with block stone interlayer in Qinghai‒Tibet railway. Sci China Ser E 2007;50(3):319‒28. 链接1

[34] Qian J, Yu QH, You YH, Hu J, Guo L. Analysis on the convection cooling process of crushed-rock embankment of high-grade highway in permafrost regions. Cold Reg Sci Technol 2012;78:115‒21. 链接1

[35] Zhang M, Lai Y, Niu F, He S. A numerical model of the coupled heat transfer for duct-ventilated embankment under wind action in cold regions and its application. Cold Reg Sci Technol 2006;45(2):103‒13. 链接1

[36] Li XN, Yu QH, You YH, Guo L. Study of air flow characteristics in ventilation duct of ventilated embankment. J Glacio Geocry 2016; 38(5):1300‒7. Chinese.

[37] Zhang M, Lai Y, Zhang J, Sun Z. Numerical study on cooling characteristics of two-phase closed thermosyphon embankment in permafrost regions. Cold Reg Sci Technol 2011;65(2):203‒10. 链接1

[38] Pei W, Zhang M, Li S, Lai Y, Long J, Zhai W, et al. Geotemperature control performance of two-phase closed thermosyphons in the shady and sunny slopes of an embankment in a permafrost region. Appl Therm Eng 2017;112:986‒98. 链接1

[39] Sun B, Yang L, Liu Q, Xu X. Numerical modelling for crushed rock layer thickness of highway embankments in permafrost regions of the Qinghai‒Tibet Plateau. Eng Geol 2010;114(3‒4):181‒90. 链接1

[40] Lebeau M, Konrad JM. Non-Darcy flow and thermal radiation in convective embankment modeling. Comput Geotech 2016;73:91‒9. 链接1

[41] Yu W, Liu W, Chen L, Yi X, Han F, Hu D. Evaluation of cooling effects of crushed rock under sand-filling and climate warming scenarios on the Tibet Plateau. Appl Therm Eng 2016;92:130‒6. 链接1

[42] Liu M, Ma W, Niu F, Luo J, Yin G. Thermal performance of a novel crushed-rock embankment structure for expressway in permafrost regions. Int J Heat Mass Transf 2018;127(B):1178‒88. 链接1

[43] Hou YD, Wu QB, Wang KG, Ye ZG. Numerical evaluation for protecting and reinforcing effect of a new designed crushed rock revetment on Qinghai‒Tibet Railway. Renew Energy 2020;156:645‒54. 链接1

[44] Gu W, Yu QH, Qian J, Jin HJ, Zhang JM. Qinghai‍‒‍Tibet expressway experimental research. Sci Cold Arid Reg 2010;2(5):396‒404.

[45] Hussain M. Dependence of power law index on surface wind speed. Energy Convers Manag 2002;43(4):467‒72. 链接1

[46] Lim J, Ooka R, Kikumoto H. Effect of diurnal variation in wind velocity profiles on ventilation performance estimates. Energy Build 2016;130:397‒407. 链接1

[47] Kikumoto H, Ooka R, Sugawara H, Lim J. Observational study of power-law approximation of wind profiles within an urban boundary layer for various wind conditions. J Wind Eng Ind Aerodyn 2017;164:13‒21. 链接1

[48] Mu Y, Ma W, Niu F, Liu Y, Fortier R, Mao Y. Long-term thermal effects of air convection embankments in permafrost zones: case study of the Qinghai‒Tibet Railway, China. J Cold Reg Eng 2018;32(4):05018004. 链接1

[49] Chai M, Mu Y, Zhang J, Ma W, Liu G, Chen J. Characteristics of asphalt pavement damage in degrading permafrost regions: case study of the Qinghai‒Tibet Highway, China. J Cold Reg Eng 2018;32(2):05018003. 链接1

相关研究