期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2022年 第8卷 第1期 doi: 10.1016/j.eng.2021.11.002

6G广域时延敏感物联网——移动边缘计算使能的非地面网络设计

a Department of Electronic Engineering, Tsinghua University, Beijing 100084, China

b Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing 100084, China

收稿日期: 2020-12-31 修回日期: 2021-06-11 录用日期: 2021-08-29 发布日期: 2021-11-15

下一篇 上一篇

摘要

在即将到来的第六代移动通信技术(6G)时代,广域时延敏感物联网(IoT)需求不断增加。由于传统蜂窝技术难以直接用于广域时延敏感IoT,因此使用非地面基础设施,包括卫星和无人机(UAV)等,基于无蜂窝网络架构构建非地面网络(NTN)亟待研究。考虑到时延敏感业务需求和IoT 设备分布不均的特点,NTN可使用移动边缘计算(MEC)来增强业务支持能力,并提供“沙漠绿洲”状(oasis-oriented)的按需覆盖。然而,在MEC使能的NTN中,通信和MEC系统相互耦合,带来通信与计算资源协同编排难题。本文提出一种面向过程的优化框架,在更大时间尺度上设计通信和MEC系统。在这个框架中,本研究采用大尺度信道状态信息(CSI)刻画复杂传播环境,构建通信与计算资源联合编排的时延最小化问题;给出该优化问题的近似问题,并将其分解为多个子问题;然后,提出迭代算法来求解这些子问题。仿真结果表明,与现有算法相比,所提出的面向过程的方案可以降低任务总时延。这为无人机载荷部署提供了依据,也显示了在广域时延敏感IoT中NTN与MEC协同设计的潜力。

补充材料

图片

图1

图2

图3

图4

图5

图6

图7

图8

图9

图10

图11

参考文献

[ 1 ] Saarnisaari H, Dixit S, Alouini MS, Chaoub A, Giordani M, Kliks A, et al. A 6G white paper on connectivity for remote areas. 2020. arXiv: 2004.14699.

[ 2 ] Huang C, Huang G, Liu W, Wang R, Xie M. A parallel joint optimized relay selection protocol for wake-up radio enabled WSNs. Phys Commun 2021;47:101320. 链接1

[ 3 ] FG-NET-2030. Network 2030: a blueprint of technology, applications and market drivers towards the year 2030 and beyond. Geneva: ITU; 2019.

[ 4 ] Wei T, Feng W, Chen Y, Wang CX, Ge N, Lu J. Hybrid satellite–terrestrial communication networks for the maritime Internet of Things: key technologies, opportunities, and challenges. IEEE Internet Things J 2021;8(11): 8910–34. 链接1

[ 5 ] Li X, Feng W, Wang J, Chen Y, Ge N, Wang CX. Enabling 5G on the ocean: a hybrid satellite–UAV–terrestrial network solution. IEEE Wirel Commun 2020;27(6):116–21. 链接1

[ 6 ] Wang Y, Feng W, Wang J, Quek TQS. Hybrid satellite–UAV–terrestrial networks for 6G ubiquitous coverage: a maritime communications perspective. IEEE J Sel Areas Commun 2021;39(11):3475–90. 链接1

[ 7 ] Onireti O, Qadir J, Imran MA, Sathiaseelan A. Will 5G see its blind side? Evolving 5G for universal Internet access. In: Proceedings of the 2016 workshop on Global Access to the Internet for All; 2016 Aug; Florianopolis, Brazil. New York: Association for Computing Machinery; 2016. p. 1–6.

[ 8 ] Liu C, Feng W, Chen Y, Wang CX, Ge N. Cell-free satellite–UAV networks for 6G wide-area Internet of Things. IEEE J Sel Areas Commun 2021;39(4):1116–31. 链接1

[ 9 ] Zhao J, Gao F, Wu Q, Jin S, Wu Y, Jia W. Beam tracking for UAV mounted SatCom on-the-move with massive antenna array. IEEE J Sel Areas Commun 2018;36(2): 363–75. 链接1

[10] Cheng X, Lyu F, Quan W, Zhou C, He H, Shi W, et al. Space/aerial-assisted computing offloading for IoT applications: a learning-based approach. IEEE J Sel Areas Commun 2019;37(5):1117–29. 链接1

[11] Raza U, Kulkarni P, Sooriyabandara M. Low power wide area networks: an overview. IEEE Commun Surv Tutor 2017;19(2):855–73. 链接1

[12] Centenaro M, Vangelista L, Zanella A, Zorzi M. Long-range communications in unlicensed bands: the rising stars in the IoT and smart city scenarios. IEEE Wirel Commun 2016;23(5):60–7. 链接1

[13] Lo Bello L, Steiner W. A perspective on IEEE time-sensitive networking for industrial communication and automation systems. Proc IEEE 2019;107(6): 1094–120. 链接1

[14] Liang W, Zheng M, Zhang J, Shi H, Yu H, Yang Y, et al. WIA-FA and its applications to digital factory: a wireless network solution for factory automation. Proc IEEE 2019;107(6):1053–73. 链接1

[15] Luvisotto M, Pang Z, Dzung D. High-performance wireless networks for industrial control applications: new targets and feasibility. Proc IEEE 2019;107(6): 1074–93. 链接1

[16] TR 38.824: Study on physical layer enhancements for NR ultra-reliable and low latency case (URLLC). 3GPP standard. France: 3GPP; 2019.

[17] TR 38.825: Study on NR industrial Internet of Things (IoT). 3GPP standard. France: 3GPP; 2019.

[18] TR 38.821: Solutions for NR to support non-terrestrial networks (NTN). 3GPP standard. France: 3GPP; 2020.

[19] Ghosh A, Maeder A, Baker M, Chandramouli D. 5G evolution: a view on 5G cellular technology beyond 3GPP Release 15. IEEE Access 2019;7:127639–51. 链接1

[20] De Sanctis M, Cianca E, Araniti G, Bisio I, Prasad R. Satellite communications supporting Internet of Remote Things. IEEE Internet Things J 2016;3(1): 113–23. 链接1

[21] Cioni S, De Gaudenzi R, Del Rio Herrero O, Girault N. On the satellite role in the era of 5G massive machine type communications. IEEE Netw 2018;32(5): 54–61. 链接1

[22] Zhen L, Qin H, Zhang Q, Chu Z, Lu G, Jiang J, et al. Optimal preamble design in spatial group-based random access for satellite-M2M communications. IEEE Wirel Commun Lett 2019;8(3):953–6. 链接1

[23] Zhang Q, Jiang M, Feng Z, Li W, Zhang W, Pan M. IoT enabled UAV: network architecture and routing algorithm. IEEE Internet Things J 2019;6(2):3727–42. 链接1

[24] Chakareski J. UAV-IoT for next generation virtual reality. IEEE Trans Image Process 2019;28(12):5977–90. 链接1

[25] Ranjha A, Kaddoum G. Quasi-optimization of uplink power for enabling green URLLC in mobile UAV-assisted IoT networks: a perturbation-based approach. IEEE Internet Things J 2021;8(3):1674–86. 链接1

[26] Huang M, Liu A, Xiong NN, Wu J. A UAV-assisted ubiquitous trust communication system in 5G and beyond networks. IEEE J Sel Areas Commun 2021;39(11):3444–58. 链接1

[27] Islambouli R, Sharafeddine S. Optimized 3D deployment of UAV-mounted cloudlets to support latency-sensitive services in IoT networks. IEEE Access 2019;7:172860–70. 链接1

[28] Zhang L, Ansari N. Latency-aware IoT service provisioning in UAV-aided mobile-edge computing networks. IEEE Internet Things J 2020;7(10): 10573–80. 链接1

[29] Tan Z, Qu H, Zhao J, Zhou S, Wang W. UAV-aided edge/fog computing in smart IoT community for social augmented reality. IEEE Internet Things J 2020;7(6): 4872–84. 链接1

[30] Tun YK, Park YM, Tran NH, Saad W, Pandey SR, Hong CS. Energy-efficient resource management in UAV-assisted mobile edge computing. IEEE Commun Lett 2021;25(1):249–53. 链接1

[31] Wang J, Liu K, Pan J. Online UAV-mounted edge server dispatching for mobileto-mobile edge computing. IEEE Internet Things J 2020;7(2):1375–86. 链接1

[32] Guo J, Huang G, Li Q, Xiong NN, Zhang S, Wang T. STMTO: a smart and trust multi-UAV task offloading system. Inf Sci 2021;573:519–40. 链接1

[33] Zeng Y, Wu Q, Zhang R. Accessing from the sky: a tutorial on UAV communications for 5G and beyond. Proc IEEE 2019;107(12):2327–75. 链接1

[34] Liu J, Du X, Cui J, Pan M, Wei D. Task-oriented intelligent networking architecture for the space–air–ground–aqua integrated network. IEEE Internet Things J 2020;7(6):5345–58. 链接1

[35] Cao P, Liu Y, Yang C, Xie S, Xie K. MEC-driven UAV-enabled routine inspection scheme in wind farm under wind influence. IEEE Access 2019;7:179252–65. 链接1

[36] Chen Y, Feng W, Zheng G. Optimum placement of UAV as relays. IEEE Commun Lett 2018;22(2):248–51. 链接1

[37] Pan Y, Jiang H, Zhu H, Wang J. Latency minimization for task offloading in hierarchical fog-computing C-RAN networks. In: Proceedings of 2020 IEEE International Conference on Communications; 2020 Jun 7–11; Dublin, Ireland; 2020. p. 1–6.

[38] Wang JB, Yang H, Cheng M, Wang JY, Lin M, Wang J. Joint optimization of offloading and resources allocation in secure mobile edge computing systems. IEEE Trans Vehicular Technol 2020;69(8):8843–54. 链接1

[39] Wang P, Yao C, Zheng Z, Sun G, Song L. Joint task assignment, transmission, and computing resource allocation in multilayer mobile edge computing systems. IEEE Internet Things J 2019;6(2):2872–84. 链接1

[40] Sharma J, Choudhury T, Satapathy SC, Sabitha AS. Study on H.265/HEVC against VP9 and H.264: on space and time complexity for codecs. In: Proceedings of 2018 International Conference on Communication, Computing and Internet of Things; 2018 Feb 17–19; Chennai, India; 2018. p. 106–10.

[41] Dymond A, Billowes C, Lopianowski M. Trends and potential for the use of satellites for rural telecommunications in developing countries. In: Proceedings of International Conference on Rural Telecommunications; 1988 May 23–25; London, UK; 1988. p. 126–9.

[42] Khuwaja AA, Chen Y, Zhao N, Alouini MS, Dobbins P. A survey of channel modeling for UAV communications. IEEE Commun Surv Tutor 2018;20(4): 2804–21. 链接1

[43] Du J, Xu W, Deng Y, Nallanathan A, Vandendorpe L. Energy-saving UAVassisted multi-user communications with massive MIMO hybrid beamforming. IEEE Commun Lett 2020;24(5):1100–4. 链接1

[44] Ammari ML, Fortier P. Low complexity ZF and MMSE detectors for the uplink MU-MIMO systems with a time-varying number of active users. IEEE Trans Vehicular Technol 2017;66(7):6586–90. 链接1

[45] Cao P, Liu W, Thompson JS, Yang C, Jorswieck EA. Semidynamic green resource management in downlink heterogeneous networks by group sparse power control. IEEE J Sel Areas Commun 2016;34(5):1250–66. 链接1

[46] Rost P. Achievable net-rates in multi-user OFDMA with partial CSI and finite channel coherence. In: Proceedings of 2012 IEEE Vehicular Technology Conference (VTC Fall); 2012 Sep 3–6; Quebec, QC, Canada; 2012. p. 1–5.

[47] Khoshnevis B, Yu W, Lostanlen Y. Two-stage channel quantization for scheduling and beamforming in network MIMO systems: feedback design and scaling laws. IEEE J Sel Areas Comm 2013;31(10):2028–42. 链接1

[48] Liu C, Feng W, Tao X, Ge N. MEC-empowered non-terrestrial networks for 6G wide-area time-sensitive Internet of Things. 2021. arXiv: 1103.21907.

[49] Sun Y, Babu P, Palomar DP. Majorization–minimization algorithms in signal processing, communications, and machine learning. IEEE Trans Signal Process 2017;65(3):794–816. 链接1

[50] Boyd S, Vandenberghe L, editors. Convex optimization. Cambridge: Cambridge University Press; 2004. 链接1

[51] Mirahsan M, Schoenen R, Yanikomeroglu H. Hethetnets: heterogeneous traffic distribution in heterogeneous wireless cellular networks. IEEE J Sel Areas Comm 2015;33(10):2252–65. 链接1

[52] Zhao B, Ren G, Dong X, Zhang H. Spatial group based optimal uplink power control for random access in satellite networks. IEEE Trans Vehicular Technol 2020;69(7):7354–65. 链接1

[53] Peng F, Cardona ÁS, Shafiee K, Leung VCM. TCP performance evaluation over GEO and LEO satellite links between performance enhancement proxies. In: Proceedings of 2012 IEEE Vehicular Technology Conference (VTC Fall); 2012 Sept 3–6; Quebec, QC, Canada; 2012. p. 1–5.

[54] Luglio M, Roseti C, Zampognaro F. Transport layer optimization for cloud computing applications via satellite: TCP Noordwijk+. China Commun 2014;11 (12):105–19. 链接1

相关研究