期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2022年 第14卷 第7期 doi: 10.1016/j.eng.2021.11.024

二氧化碳捕集与封存——历史与未来之路

a Department of Geology, Northwest University, Xi'an 710069, China

b National and Local Joint Engineering Research Center of Carbon Capture and Storage Technology, Xi'an 710069, China

c Shaanxi Key Laboratory for Carbon Neutral Technology, Xi'an 710069, China

d College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China

收稿日期: 2021-07-27 修回日期: 2021-10-16 录用日期: 2021-11-24 发布日期: 2022-03-12

下一篇 上一篇

摘要

二氧化碳捕集与封存(CCS)的大规模部署在全球实现净零排放的道路中显得越发紧迫,但CCS的全球部 署显著落后于预期。回顾和学习先进国家CCS的成功实例与历史,有助于包括中国在内的国家采取科 学的方法来推动与部署CCS项目。在CCS关键技术研发与示范中,本文认为先进国家CCS科技基础研 究设施的建立是其CCS技术源头创新、成本降低、风险降低、商业化推广及人才培养的源泉。除了激励 政策外,CCS的良性发展,需要从科技基础研究设施过渡到规模化商业化设施,不然难以跨越从小规模示 范到百万吨级CCS中心(hub)与千万吨级CCS hub实施的技术障碍。CO2地质封存是CCS项目的最终目 标与解决捕集CO2归宿的驱动力。进一步提高观测、监测和证实(MMV)CO2封存量、减排量与安全性技 术的精度,仍然是地质封存面临的问题。咸水层CO2封存可以更好地耦合多种碳排放源,是目前需要优 先发展的方向。降低低浓度CO2捕集的能耗、减小化学吸收剂的衰竭、提高燃烧后CO2捕集系统的运行效率和稳定性成为制约大规模CCS部署的关键。对于各国最大程度地开采化石燃料而不是从环境友好 程度较低的产油国进口石油,CO2驱油提高石油采收率(CO2-EOR)也非常重要。

图片

图1

图2

图3

参考文献

[ 1 ] Orr FM. Onshore geologic storage of CO2. Science 2009;325(5948):1656‒8. 链接1

[ 2 ] Chu S. Carbon capture and sequestration. Science 2009;325(5948):1599. 链接1

[ 3 ] Intergovernmental Panel on Climate Change. Special report on carbon dioxide capture and storage. Report. Cambridge: Cambridge University Press; 2005.

[ 4 ] International Energy Agency. Net zero by 2050. A roadmap for the global energy sector. Report. Paris: International Energy Agency; 2021. 链接1

[ 5 ] Carbon Sequestration Leadership Forum. The carbon sequestration leadership forum (CSLF) technology roadmap 2021. Report. Washington, DC: CSLF Publications; 2021.

[ 6 ] Intergovernmental Panel on Climate Change. The fifth assessment report (AR5). Report. New York: Intergovernmental Panel on Climate Change; 2014.

[ 7 ] Intergovernmental Panel on Climate Change. Global warming of 1.5 ℃. Report. Geneva: Intergovernmental Panel on Climate Change; 2018. 链接1

[ 8 ] International Energy Agency. The role of CCUS in low-carbon power systems. Report. Paris: International Energy Agency; 2020. 链接1

[ 9 ] Wei YM, Kang JN, Liu LC, Li Q, Wang PT, Hou JJ, et al. A proposed global layout of carbon capture and storage in line with a 2 ℃ climate target. Nature Climate Chang 2021;11(2):112‒8. 链接1

[10] Duan H, Zhou S, Jiang K, Bertram C, Harmsen M, Kriegler E, et al. Assessing China’s efforts to pursue the 1.5 ℃ warming limit. Science 2021;372(6540):378‒85. 链接1

[11] Institute of Climate Change and Sustainable Development of Tsinghua University. China’s long-term low-carbon development strategies and pathways. Singapore: Springer; 2021.

[12] Asian Development Bank. Road map update for carbon capture utilization and storage demonstration and deployment in the People’s Republic of China. Report. Manila: Asian Development Bank; 2022. 链接1

[13] Gill TE. Ten years of handling CO2 for SACROC unit. In: Proceedings of SPE Annual Technical Conference and Exhibition; 1982 Sep 26‒29; New Orleans, LA, USA. OnePetro; 1982. p. SPE-11162-MS. 链接1

[14] Hovorka SD, Smyth RC, Romanak KD, Yang C, Nicot JP, Hardage B, et al. SACROC research report [Internet]. Austin: Bureau of Economic Geology; 2021 [cited 2021 Jul 28]. Available form: https://www.‍beg.‍utexas.‍edu/gccc/research/sacroc. 链接1

[15] Marchetti C. On geoengineering and the CO2 problem. Clim Change 1977;1(1):59‒68. 链接1

[16] Chadwick A, Williams G, Delepine N, Clochard V, Labat K, Sturton S, et al. Quantitative analysis of time-lapse seismic monitoring data at the Sleipner CO2 storage operation. Leading Edge 2010;29(2):170‒7. 链接1

[17] Wilson M, Monea M, editors. IEA GHG Weyburn CO2 monitoring & storage operation summary report 2000‍‒‍2004. In: Proceedings of 7th International Conference on Greenhouse Gas Control Technologies; 2004 Sep 5‍‒‍9; Vancouver, BC, Canada. Regina: PTRC Internet Homepage; 2004.

[18] Hitchon B. Best practices for validating CO2 geological storage: observations and guidance from the IEAGHG Weyburn‍‍‒‍Midale CO2 monitoring project. Sherwood Park: Geoscience Publishing; 2013.

[19] Brown K, Whittaker S, Wilson M, Srisang W, Smithson H, Tontiwachwuthikul P. The history and development of the IEA GHG Weyburn‍‒‍Midale CO2 monitoring and storage project in Saskatchewan, Canada (the world largest CO2 for EOR and CCS program). Petroleum 2017;3(1):3‒9. 链接1

[20] Bui M, Adjiman CS, Bardow A, Anthony EJ, Boston A, Brown S, et al. Carbon capture and storage (CCS): the way forward. Energy Environ Sci 2018;11(5):1062‒176. 链接1

[21] Global CCS Institute. Global status of CCS 2020. Report. Melbourne: Global CCS Institute;2020.

[22] Simon O. Quest CCS project—learning from the first year of operations [presentation]. In: CCS Technical Workshop; 2017 Jan; Toyko, Japan; 2017.

[23] Gislason SR, Oelkers EH. Carbon storage in basalt. Science 2014;344(6182):373‒4. 链接1

[24] Matter JM, Stute M, Snæbjörnsdottir SÓ, Oelkers EH, Gislason SR, Aradottir ES, et al. Rapid carbon mineralization for permanent disposal of anthropogenic carbon dioxide emissions. Science 2016;352(6291):1312‒4. 链接1

[25] Sawada Y. Overview of Tomakomai CCS demonstration project key results of Tomakomai project [presentation]. In: Carbon Capture, Utilization and Storage in Japan; 2020 June 24; online conference. 链接1

[26] White D. Seismic characterization and time-lapse imaging during seven years of CO2 flood in the Weyburn field, Saskatchewan. Canada Int J Greenh Gas Control 2013;16(S1):S78‒94. 链接1

[27] Ma JF, Li L, Wang HF, Tan MY, Cui SL, Zhang YY, et al. Geophysical monitoring technology for CO2 sequestration. Appl Geophys 2016;‍13(2):288‒306. 链接1

[28] Worth K, White D, Chalaturnyk R, Sorensen J, Hawkes C, Rostron B, et al. Aquistore project measurement, monitoring and verification: from concept to CO2 injection. Energy Procedia 2014;63:3202‒8. 链接1

[29] Verdon JP, Kendall JM, Stork AL, Chadwick RA, White DJ, Bissell RC. Comparison of geomechanical deformation induced by megatonne-scale CO2 storage at Sleipner, Weyburn, and In Salah. Proc Natl Acad Sci USA 2013;110(30):E2762‒71. 链接1

[30] Maas W. Quest CCS project costs [presentation]. In: Cost Network WorkshopCCS; 2017 Sep 13‒14; London, UK; 2017.

[31] Rochelle GT. Amine scrubbing for CO2 capture. Science 2009;325(5948):1652‒4. 链接1

[32] Bhown AS, Freeman BC. Analysis and status of post-combustion carbon dioxide capture technologies. Environ Sci Technol 2011;45(20):8624‒32. 链接1

[33] Herzog HJ. Carbon capture. Cambridge: MIT PRESS; 2018. 链接1

[34] Service RF. Carbon capture marches toward practical use. Science 2021;371(6536):1300. 链接1

[35] Nath D, Campbell C, Feng Y, Bruce C, Philip F, Henni A, et al. A novel methodology for online analysis of amine solution degradation caused by fly ash. In: Proceedings of 15th Greenhouse Gas Control Technologies Conference; 2021 Mar 15‒18; Abu Dhabi, UAE. SSRN; 2021. p. 1‒14. 链接1

[36] Lunsford L. Front end engineering design of Linde BASF advanced post combustion CO2 capture technology at a Southern Company Natural Gas Fired Power Plant [presentation]. In: 2020 Integrated Project Review Webinar; 2020 Aug 17‒19; online conference. 链接1

[37] Giannaris S, Bruce C, Jacobs B, Srisang W, Janowczyk D. Implementing a second-generation CCS facility on a coal fired power station—results of a feasibility study to retrofit SaskPower’‍s Shand power station with CCS. Greenhouse Gas Sci Technol 2020;10(3):506‒18. 链接1

[38] Ma J. China’s CCUS progress and deployment [presentation]. In: CLSF 7th Ministerial Meeting; 2017 Dec 3‒7; Abu Dhabi, UAE; 2017.

[39] [Roadmap for carbon capture, utilization and storage technology in China (2019)]. Beijing: Science Press; 2019. Chinese.

[40] Xie H, Li X, Fang Z, Wang Y, Li Q, Shi L, et al. Carbon geological utilization and storage in China: current status and perspective. Acta Geotech 2014;9(1):7‒27. 链接1

[41] Liu HJ, Were P, Li Q, Gou Y, Hou Z. Worldwide status of CCUS technologies and their development and challenges in China. Geofluids 2017;2017:1‒25. 链接1

[42] Li Q, Song R, Liu X, Liu G, Sun Y. Monitoring of carbon dioxide geological utilization and storage in China: a review. In: Wu Y, Carroll JJ, Zhu W, editors. Acid gas extraction for disposal and related topics. New York: Wiley-Scrivener; 2016. p. 331‒58. 链接1

[43] Li X, Li Q, Bai B, Wei N, Yuan W. The geomechanics of Shenhua carbon dioxide capture and storage (CCS) demonstration project in Ordos Basin. China J Rock Mech Geotech Eng 2016;8(6):948‒66. 链接1

[44] Schrag DP. Storage of carbon dioxide in offshore sediments. Science 2009;325(5948):1658‒9. 链接1

[45] Folger P. Carbon capture and sequestration (CCS) in the United States. Report. Washington, DC: CRS; 2018.

[46] Damiani D. Safe geologic storage of captured carbon dioxide: two decades of DOE’s carbon storage R&D program in review. Report. Washington, DC: US DOE Office of Fossil Energy; 2020.

[47] Bickle MJ. Geological carbon storage. Nat Geosci 2009;2(12):815‒8. 链接1

[48] Li Q, Liu G. Risk assessment of the geological storage of CO2: a review. In: Vishal V, Singh TN, editors. Geologic carbon sequestration. New York: Springer; 2016. p. 249‒84. 链接1

[49] Skinner LC. CO2 blowouts: an emerging problem. World Oil 2003;‍224(1):38‒42.

[50] Loizzo M, Akemu AP, Jammes L, Desroches J, Lombardi S, Annunziatellis A. Quantifying the risk of CO2 leakage through wellbores. SPE Drill Complet 2011;26(3):324‒31. 链接1

[51] Carroll S, Carey JW, Dzombak D, Huerta NJ, Li L, Richard T, et al. Review: role of chemistry, mechanics, and transport on well integrity in CO2 storage environments. Int J Greenh Gas Control 2016;49:149‒60. 链接1

[52] Chhun C, Tsuji T. Pore pressure analysis for distinguishing earthquakes induced by CO2 injection from natural earthquakes. Sustainability 2020;12:9723. 链接1

[53] Research report on impacts of Hokkaido Eastern Iburi Earthquake on CO2 reservoir. Report. Tokyo: Japan CCS Co., Ltd.; 2018 Nov.

[54] Sano Y, Kagoshima T, Takahata N, Shirai K, Park JO, Snyder GT, et al. Groundwater anomaly related to CCS-CO2 injection and the 2018 Hokkaido eastern Iburi earthquake in Japan. Front Earth Sci 2020;8:611010. 链接1

[55] Nakajima T, Xue Z. Evaluation of a resistivity model derived from time-lapse well logging of a pilot-scale CO2 injection site, Nagaoka, Japan. Int J Greenh Gas Control 2013;12:288‒99. 链接1

[56] Zoback MD, Gorelick SM. Earthquake triggering and large-scale geologic storage of carbon dioxide. Proc Natl Acad Sci USA 2012;109(26):10164‒8. 链接1

[57] Juanes R, Hager BH, Herzog HJ. No geologic evidence that seismicity causes fault leakage that would render large-scale carbon capture and storage unsuccessful. Proc Natl Acad Sci USA 2012;109(52):E3623. 链接1

[58] Vilarrasa V, Carrera J. Geologic carbon storage is unlikely to trigger large earthquakes and reactivate faults through which CO2 could leak. Proc Natl Acad Sci USA 2015;112(19):5938‒43. 链接1

[59] Feitz A, Tertyshnikov K, Pevzner R, Ricard L, Harris B, Schaa R, et al. The CO2CRC Otway shallow CO2 controlled release experiment: preparation for phase 2. Energy Procedia 2018;154:145‒50. 链接1

[60] Kim KH, Ree JH, Kim Y, Kim S, Kang SY, Seo W. Assessing whether the 2017 Mw 5.4 Pohang earthquake in South Korea was an induced event. Science 2018;360(6392):1007‒9. 链接1

[61] National Research Council. Induced seismicity potential in energy technologies. Washington, DC: National Academies Press; 2013.

[62] Zoback MD, Gorelick SM. To prevent earthquake triggering, pressure changes due to CO2 injection need to be limited. Proc Natl Acad Sci USA 2015;112(33):E4510. 链接1

[63] Duxbury A, White D, Samson C, Hall SA, Wookey J, Kendall JM. Fracture mapping using seismic amplitude variation with offset and azimuth analysis at the Weyburn CO2 storage site. Geophysics 2012;77(6):B295‒306. 链接1

[64] Cai B, Li Q, Lin Q, Ma J, Pang L. 2020, China carbon dioxide capture, utilization and storage (CCUS) status report. Beijing: China Environmental Publishing Group; 2020. Chinese.

[65] Hill LB, Li X, Wei N. CO2-EOR in China: a comparative review. Int J Greenh Gas Control 2020;103:103173. 链接1

[66] Wang H, Wang Z, Ma J, Li L, Wang Y, Tan M, et al. Effective pressure prediction from 4D seismic AVO data during CO2-EOR and storage. Int J Greenh Gas Control 2022;113:103525. 链接1

[67] Bickle M, Kampman N. Lessons in carbon storage from geological analogues. Geology 2013;41(4):525‒6. 链接1

[68] Gaus I, Azaroual M, Czernichowski-Lauriol I. Reactive transport modelling of the impact of CO2 injection on the clayey cap rock at Sleipner (North Sea). Chem Geol 2005;217(3‒4):319‒37.

[69] Lu J, Wilkinson M, Haszeldine RS, Fallick AE. Long-term performance of a mudrock seal in natural CO2 storage. Geology 2009;37(1):35‒8. 链接1

[70] Blackford J, Stahl H, Bull JM, Bergès BJP, Cevatoglu M, Lichtschlag A, et al. Detection and impacts of leakage from sub-seafloor deep geological carbon dioxide storage. Nat Clim Chang 2014;4(11):1011‒6. 链接1

[71] White JA, Chiaramonte L, Ezzedine S, Foxall W, Hao Y, Ramirez A, et al. Geomechanical behavior of the reservoir and caprock system at the In Salah CO2 storage project. Proc Natl Acad Sci USA 2014;111(24):8747‒52. 链接1

[72] White JA, Foxall W. Assessing induced seismicity risk at CO2 storage projects: recent progress and remaining challenges. Int J Greenh Gas Control 2016;49(1):413‒24. 链接1

[73] Rinaldi AP, Rutqvist J, Cappa F. Geomechanical effects on CO2 leakage through fault zones during large-scale underground injection. Int J Greenh Gas Control 2014;20:117‒31. 链接1

[74] Bourne S, Crouch S, Smith M. A risk-based framework for measurement, monitoring and verification of the Quest CCS Project, Alberta, Canada. Int J Greenh Gas Control 2014;26:109‒26. 链接1

[75] Cappa F, Rutqvist J. Modeling of coupled deformation and permeability evolution during fault reactivation induced by deep underground injection of CO2. Int J Greenh Gas Control 2011;5(2):336‒46. 链接1

[76] Rutqvist J, Rinaldi AP, Cappa F, Jeanne P, Mazzoldi A, Urpi L, et al. Fault activation and induced seismicity in geological carbon storage—lessons learned from recent modeling studies. J Rock Mech Geotech Eng 2016;8(6):789‒804. 链接1

[77] Wang Z, Cates ME, Langan RT. Seismic monitoring of a CO2 flood in a carbonate reservoir: a rock physics study. Geophysics 1998;63(5): 1604‒17. 链接1

[78] White D. Monitoring CO2 storage during EOR at the Weyburn‒Midale field. Leading Edge 2009;28(7):838‒42. 链接1

[79] Ivanova A, Kashubin A, Juhojuntti N, Kummerow J, Henninges J, Juhlin C, et al. Monitoring and volumetric estimation of injected CO2 using 4D seismic, petrophysical data, core measurements and well logging: a case study at Ketzin. Germany Geophys Prospect 2012;60(5):957‒73. 链接1

[80] Sun Y, Liu J, Xue Z, Li Q, Fan C, Zhang X. A critical review of distributed fiber optic sensing for real-time monitoring geologic CO2 sequestration. J Nat Gas Sci Eng 2021;88:103751. 链接1

[81] White DJ, LANRoach, Roberts B. Time-lapse seismic performance of a sparse permanent array: experience from the Aquistore CO2 storage site. Geophysics 2015;80(2):WA35‒48. 链接1

[82] LANRoach, White DJ, Roberts B, Angus D. Initial 4D seismic results after CO2 injection start-up at the Aquistore storage site. Geophysics 2017;82(3):B95‒107. 链接1

[83] Watson M. CO2CRC Otway stage 3 project [presentation]. In: CLSF 7th Ministerial Meeting; 2017 Dec 3‒7; Abu Dhabi, UAE; 2017.

[84] Alnes H, Eiken O, Stenvold T. Monitoring gas production and CO2 injection at the Sleipner field using time-lapse gravimetry. Geophysics 2008;73(6):WA155‒61. 链接1

[85] Ma J, Morozov IB. AVO modeling of pressure-saturation effects in Weyburn CO2 sequestration. Leading Edge 2010;29(2):178‒83. 链接1

[86] Mito S, Xue Z. Post-Injection monitoring of stored CO2 at the Nagaoka pilot site: 5 years time-lapse well logging results. Energy Procedia 2011;4:3284‒9. 链接1

相关研究